Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 185(4): 690-711.e45, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35108499

RESUMO

Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.


Assuntos
Análise de Célula Única , Transcriptoma/genética , Algoritmos , Feminino , Regulação da Expressão Gênica , Células HL-60 , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Cinética , Modelos Biológicos , RNA Mensageiro/metabolismo , Coloração e Rotulagem
2.
Cell ; 167(7): 1867-1882.e21, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984733

RESUMO

Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endorribonucleases , Retroalimentação , Humanos , Modelos Moleculares , Proteínas Serina-Treonina Quinases , RNA Guia de Cinetoplastídeos/metabolismo , Transcrição Gênica , Resposta a Proteínas não Dobradas
3.
Cell ; 166(6): 1572-1584.e16, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27594427

RESUMO

P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5. To probe how polarity proteins regulate phase separation, we combined biochemistry and theoretical modeling. We reconstitute P granule-like droplets in vitro using a single protein PGL-3. By combining in vitro reconstitution with measurements of intracellular concentrations, we show that competition between PGL-3 and MEX-5 for mRNA can regulate the formation of PGL-3 droplets. Using theory, we show that, in a MEX-5 gradient, this mRNA competition mechanism can drive a gradient of P granule assembly with similar spatial and temporal characteristics to P granule assembly in vivo. We conclude that gradients of polarity proteins can position RNP granules during development by using RNA competition to regulate local phase separation.


Assuntos
Caenorhabditis elegans/metabolismo , RNA Mensageiro/metabolismo , Animais , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular , Embrião não Mamífero , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Modelos Teóricos , Ligação Proteica , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo
4.
Cell ; 163(3): 712-23, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496610

RESUMO

The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis.


Assuntos
Mapeamento de Interação de Proteínas , Proteômica/métodos , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Humanos
5.
Cell ; 162(5): 1066-77, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26317470

RESUMO

Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.


Assuntos
Envelhecimento/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Mutação , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Envelhecimento/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/química , Citoplasma/química , Humanos , Príons/química , Agregados Proteicos , Estrutura Terciária de Proteína , Proteína FUS de Ligação a RNA/metabolismo
6.
Cell ; 152(4): 909-22, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23394947

RESUMO

Genetic interaction (GI) maps, comprising pairwise measures of how strongly the function of one gene depends on the presence of a second, have enabled the systematic exploration of gene function in microorganisms. Here, we present a two-stage strategy to construct high-density GI maps in mammalian cells. First, we use ultracomplex pooled shRNA libraries (25 shRNAs/gene) to identify high-confidence hit genes for a given phenotype and effective shRNAs. We then construct double-shRNA libraries from these to systematically measure GIs between hits. A GI map focused on ricin susceptibility broadly recapitulates known pathways and provides many unexpected insights. These include a noncanonical role for COPI, a previously uncharacterized protein complex affecting toxin clearance, a specialized role for the ribosomal protein RPS25, and functionally distinct mammalian TRAPP complexes. The ability to rapidly generate mammalian GI maps provides a potentially transformative tool for defining gene function and designing combination therapies based on synergistic pairs.


Assuntos
Transporte Biológico , Epistasia Genética , Ricina/toxicidade , Atorvastatina , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Heptanoicos/farmacologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pirróis/farmacologia , RNA Interferente Pequeno , Proteínas Ribossômicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
Cell ; 149(6): 1339-52, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682253

RESUMO

We present a genetic interaction map of pairwise measures including ∼40% of nonessential S. pombe genes. By comparing interaction maps for fission and budding yeast, we confirmed widespread conservation of genetic relationships within and between complexes and pathways. However, we identified an important subset of orthologous complexes that have undergone functional "repurposing": the evolution of divergent functions and partnerships. We validated three functional repurposing events in S. pombe and mammalian cells and discovered that (1) two lumenal sensors of misfolded ER proteins, the kinase/nuclease Ire1 and the glucosyltransferase Gpt1, act together to mount an ER stress response; (2) ESCRT factors regulate spindle-pole-body duplication; and (3) a membrane-protein phosphatase and kinase complex, the STRIPAK complex, bridges the cis-Golgi, the centrosome, and the outer nuclear membrane to direct mitotic progression. Each discovery opens new areas of inquiry and-together-have implications for model organism-based research and the evolution of genetic systems.


Assuntos
Epistasia Genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Evolução Biológica , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glicoproteínas de Membrana , Mitose , Complexos Multiproteicos/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Fuso Acromático , Resposta a Proteínas não Dobradas
8.
Immunity ; 41(5): 722-36, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25464853

RESUMO

Regulatory T (Treg) cells maintain immune homeostasis and prevent inflammatory and autoimmune responses. During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become Treg cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined. To address this open question, we genetically ablated the TCR of mature Treg cells in vivo. These experiments revealed that TCR-induced Treg lineage-defining Foxp3 expression and gene hypomethylation were uncoupled from TCR input in mature Treg cells. However, Treg cell homeostasis, cell-type-specific gene expression and suppressive function critically depend on continuous triggering of their TCR.


Assuntos
Autoimunidade/imunologia , Fatores de Transcrição Forkhead/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Metilação de DNA/imunologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Inflamação/imunologia , Fatores Reguladores de Interferon/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/metabolismo , Timócitos/citologia
9.
Nat Methods ; 16(7): 619-626, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209384

RESUMO

Sample multiplexing facilitates scRNA-seq by reducing costs and identifying artifacts such as cell doublets. However, universal and scalable sample barcoding strategies have not been described. We therefore developed MULTI-seq: multiplexing using lipid-tagged indices for single-cell and single-nucleus RNA sequencing. MULTI-seq reagents can barcode any cell type or nucleus from any species with an accessible plasma membrane. The method involves minimal sample processing, thereby preserving cell viability and endogenous gene expression patterns. When cells are classified into sample groups using MULTI-seq barcode abundances, data quality is improved through doublet identification and recovery of cells with low RNA content that would otherwise be discarded by standard quality-control workflows. We use MULTI-seq to track the dynamics of T-cell activation, perform a 96-plex perturbation experiment with primary human mammary epithelial cells and multiplex cryopreserved tumors and metastatic sites isolated from a patient-derived xenograft mouse model of triple-negative breast cancer.


Assuntos
Lipídeos/química , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Sequência de Bases , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
10.
J Biol Chem ; 294(50): 18952-18966, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31578281

RESUMO

Intercellular propagation of protein aggregation is emerging as a key mechanism in the progression of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia (FTD). However, we lack a systematic understanding of the cellular pathways controlling prion-like propagation of aggregation. To uncover such pathways, here we performed CRISPR interference (CRISPRi) screens in a human cell-based model of propagation of tau aggregation monitored by FRET. Our screens uncovered that knockdown of several components of the endosomal sorting complexes required for transport (ESCRT) machinery, including charged multivesicular body protein 6 (CHMP6), or CHMP2A in combination with CHMP2B (whose gene is linked to familial FTD), promote propagation of tau aggregation. We found that knocking down the genes encoding these proteins also causes damage to endolysosomal membranes, consistent with a role for the ESCRT pathway in endolysosomal membrane repair. Leakiness of the endolysosomal compartment significantly enhanced prion-like propagation of tau aggregation, likely by making tau seeds more available to pools of cytoplasmic tau. Together, these findings suggest that endolysosomal escape is a critical step in tau propagation in neurodegenerative diseases.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lisossomos/metabolismo , Proteínas tau/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Agregados Proteicos
11.
Nat Methods ; 13(9): 731-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27348712

RESUMO

A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.


Assuntos
Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Software , Gráficos por Computador , Bases de Dados de Proteínas , Aprendizado de Máquina , Processamento de Proteína Pós-Traducional , Fluxo de Trabalho
12.
Proc Natl Acad Sci U S A ; 113(35): E5192-201, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27519799

RESUMO

Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.


Assuntos
Cisteína Endopeptidases/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteases 3C de Coronavírus , Cisteína Endopeptidases/genética , Regulação para Baixo , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/virologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/genética , Replicação Viral/genética
13.
Mol Cell Proteomics ; 14(1): 120-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363814

RESUMO

Protein-protein interactions are fundamental to the understanding of biological processes. Affinity purification coupled to mass spectrometry (AP-MS) is one of the most promising methods for their investigation. Previously, complexes were purified as much as possible, frequently followed by identification of individual gel bands. However, todays mass spectrometers are highly sensitive, and powerful quantitative proteomics strategies are available to distinguish true interactors from background binders. Here we describe a high performance affinity enrichment-mass spectrometry method for investigating protein-protein interactions, in which no attempt at purifying complexes to homogeneity is made. Instead, we developed analysis methods that take advantage of specific enrichment of interactors in the context of a large amount of unspecific background binders. We perform single-step affinity enrichment of endogenously expressed GFP-tagged proteins and their interactors in budding yeast, followed by single-run, intensity-based label-free quantitative LC-MS/MS analysis. Each pull-down contains around 2000 background binders, which are reinterpreted from troubling contaminants to crucial elements in a novel data analysis strategy. First the background serves for accurate normalization. Second, interacting proteins are not identified by comparison to a single untagged control strain, but instead to the other tagged strains. Third, potential interactors are further validated by their intensity profiles across all samples. We demonstrate the power of our AE-MS method using several well-known and challenging yeast complexes of various abundances. AE-MS is not only highly efficient and robust, but also cost effective, broadly applicable, and can be performed in any laboratory with access to high-resolution mass spectrometers.


Assuntos
Proteínas de Fluorescência Verde/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Cromatografia Líquida , Proteínas de Fluorescência Verde/química , Proteínas de Saccharomyces cerevisiae/química
14.
Proteomics ; 16(18): 2491-4, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27440201

RESUMO

UNLABELLED: We introduce msVolcano, a web application for the visualization of label-free mass spectrometric data. It is optimized for the output of the MaxQuant data analysis pipeline of interactomics experiments and generates volcano plots with lists of interacting proteins. The user can optimize the cutoff values to find meaningful significant interactors for the tagged protein of interest. Optionally, stoichiometries of interacting proteins can be calculated. Several customization options are provided to the user for flexibility, and publication-quality outputs can also be downloaded (tabular and graphical). AVAILABILITY: msVolcano is implemented in R Statistical language using Shiny. It can be accessed freely at http://projects.biotec.tu-dresden.de/msVolcano/.


Assuntos
Proteômica/métodos , Software , Internet , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas
15.
PLoS Biol ; 11(6): e1001589, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853545

RESUMO

Natural killer T (NKT) cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR.


Assuntos
Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Animais , Linhagem da Célula , Citocinas/metabolismo , Técnicas de Introdução de Genes , Homeostase , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/patologia , Contagem de Linfócitos , Camundongos , Camundongos Transgênicos , Fenótipo , Transdução de Sinais/imunologia , Fatores de Tempo
16.
Mol Cell Proteomics ; 13(12): 3497-506, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225357

RESUMO

Absolute protein quantification using mass spectrometry (MS)-based proteomics delivers protein concentrations or copy numbers per cell. Existing methodologies typically require a combination of isotope-labeled spike-in references, cell counting, and protein concentration measurements. Here we present a novel method that delivers similar quantitative results directly from deep eukaryotic proteome datasets without any additional experimental steps. We show that the MS signal of histones can be used as a "proteomic ruler" because it is proportional to the amount of DNA in the sample, which in turn depends on the number of cells. As a result, our proteomic ruler approach adds an absolute scale to the MS readout and allows estimation of the copy numbers of individual proteins per cell. We compare our protein quantifications with values derived via the use of stable isotope labeling by amino acids in cell culture and protein epitope signature tags in a method that combines spike-in protein fragment standards with precise isotope label quantification. The proteomic ruler approach yields quantitative readouts that are in remarkably good agreement with results from the precision method. We attribute this surprising result to the fact that the proteomic ruler approach omits error-prone steps such as cell counting or protein concentration measurements. The proteomic ruler approach is readily applicable to any deep eukaryotic proteome dataset-even in retrospective analysis-and we demonstrate its usefulness with a series of mouse organ proteomes.


Assuntos
DNA/química , Histonas/análise , Proteoma/análise , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Contagem de Células , Linhagem Celular Tumoral , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Marcação por Isótopo , Camundongos , Proteoma/genética , Proteoma/metabolismo , Padrões de Referência
17.
Mol Cell Proteomics ; 13(9): 2513-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24942700

RESUMO

Protein quantification without isotopic labels has been a long-standing interest in the proteomics field. However, accurate and robust proteome-wide quantification with label-free approaches remains a challenge. We developed a new intensity determination and normalization procedure called MaxLFQ that is fully compatible with any peptide or protein separation prior to LC-MS analysis. Protein abundance profiles are assembled using the maximum possible information from MS signals, given that the presence of quantifiable peptides varies from sample to sample. For a benchmark dataset with two proteomes mixed at known ratios, we accurately detected the mixing ratio over the entire protein expression range, with greater precision for abundant proteins. The significance of individual label-free quantifications was obtained via a t test approach. For a second benchmark dataset, we accurately quantify fold changes over several orders of magnitude, a task that is challenging with label-based methods. MaxLFQ is a generic label-free quantification technology that is readily applicable to many biological questions; it is compatible with standard statistical analysis workflows, and it has been validated in many and diverse biological projects. Our algorithms can handle very large experiments of 500+ samples in a manageable computing time. It is implemented in the freely available MaxQuant computational proteomics platform and works completely seamlessly at the click of a button.


Assuntos
Algoritmos , Proteínas/análise , Proteômica/métodos , Escherichia coli/metabolismo , Células HeLa , Humanos , Peptídeos/análise , Proteoma , Software
18.
Mol Cell Proteomics ; 12(12): 3599-611, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23979707

RESUMO

Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.


Assuntos
Antígenos de Superfície/genética , Biomarcadores Tumorais/genética , Moléculas de Adesão Celular/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Animais , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Isótopos de Carbono , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colágeno/química , Combinação de Medicamentos , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Marcação por Isótopo , Laminina/química , Lectinas Tipo C/metabolismo , Espectrometria de Massas , Glicoproteínas de Membrana/metabolismo , Camundongos , Morfogênese/genética , Neovascularização Patológica , Cultura Primária de Células , Ligação Proteica , Proteoglicanas/química , Proteômica , Transdução de Sinais
19.
Nat Commun ; 14(1): 6245, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803001

RESUMO

Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteômica , Pulmão , Células Epiteliais
20.
Nat Biotechnol ; 40(3): 391-401, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34697476

RESUMO

Understanding how viral and host factors interact and how perturbations impact infection is the basis for designing antiviral interventions. Here we define the functional contribution of each viral and host factor involved in human cytomegalovirus infection in primary human fibroblasts through pooled CRISPR interference and nuclease screening. To determine how genetic perturbation of critical host and viral factors alters the timing, course and progression of infection, we applied Perturb-seq to record the transcriptomes of tens of thousands of CRISPR-modified single cells and found that, normally, most cells follow a stereotypical transcriptional trajectory. Perturbing critical host factors does not change the stereotypical transcriptional trajectory per se but can stall, delay or accelerate progression along the trajectory, allowing one to pinpoint the stage of infection at which host factors act. Conversely, perturbation of viral factors can create distinct, abortive trajectories. Our results reveal the roles of host and viral factors and provide a roadmap for the dissection of host-pathogen interactions.


Assuntos
Infecções por Citomegalovirus , Genômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções por Citomegalovirus/genética , Fibroblastos , Interações Hospedeiro-Patógeno/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA