Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Metab ; 36: 100976, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251665

RESUMO

OBJECTIVE: The metabolic influence of gut microbiota plays a pivotal role in the pathogenesis of cardiometabolic diseases. Antibiotics affect intestinal bacterial diversity, and long-term usage has been identified as an independent risk factor for atherosclerosis-driven events. The aim of this study was to explore the interaction between gut dysbiosis by antibiotics and metabolic pathways with the impact on atherosclerosis development. METHODS: We combined oral antibiotics with different diets in an Apolipoprotein E-knockout mouse model linking gut microbiota to atherosclerotic lesion development via an integrative cross-omics approach including serum metabolomics and cecal 16S rRNA targeted metagenomic sequencing. We further investigated patients with carotid atherosclerosis compared to control subjects with comparable cardiovascular risk. RESULTS: Here, we show that increased atherosclerosis by antibiotics was connected to a loss of intestinal diversity and alterations of microbial metabolic functional capacity with a major impact on the host serum metabolome. Pathways that were modulated by antibiotics and connected to atherosclerosis included diminished tryptophan and disturbed lipid metabolism. These pathways were related to the reduction of certain members of Bacteroidetes and Clostridia by antibiotics in the gut. Patients with atherosclerosis presented a similar metabolic signature as those induced by antibiotics in our mouse model. CONCLUSION: Taken together, this work provides insights into the complex interaction between intestinal microbiota and host metabolism. Our data highlight that detrimental effects of antibiotics on the gut flora are connected to a pro-atherogenic metabolic phenotype beyond classical risk factors.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/microbiologia , Microbioma Gastrointestinal/genética , Idoso , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/genética , Ceco/microbiologia , Progressão da Doença , Fezes , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Soro/química
2.
J Lab Autom ; 19(6): 593-601, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25208534

RESUMO

The enormous variation possibilities of bioprocesses challenge process development to fix a commercial process with respect to costs and time. Although some cultivation systems and some devices for unit operations combine the latest technology on miniaturization, parallelization, and sensing, the degree of automation in upstream and downstream bioprocess development is still limited to single steps. We aim to face this challenge by an interdisciplinary approach to significantly shorten development times and costs. As a first step, we scaled down analytical assays to the microliter scale and created automated procedures for starting the cultivation and monitoring the optical density (OD), pH, concentrations of glucose and acetate in the culture medium, and product formation in fed-batch cultures in the 96-well format. Then, the separate measurements of pH, OD, and concentrations of acetate and glucose were combined to one method. This method enables automated process monitoring at dedicated intervals (e.g., also during the night). By this approach, we managed to increase the information content of cultivations in 96-microwell plates, thus turning them into a suitable tool for high-throughput bioprocess development. Here, we present the flowcharts as well as cultivation data of our automation approach.


Assuntos
Automação Laboratorial/métodos , Técnicas Microbiológicas/métodos , Robótica/métodos , Acetatos/análise , Biomassa , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Glucose/análise , Ensaios de Triagem em Larga Escala/métodos , Concentração de Íons de Hidrogênio , Lactobacillus/crescimento & desenvolvimento , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA