RESUMO
Asymmetric synthesis constitutes a key technology for the preparation of enantiomerically pure compounds as well as for the selective control of individual stereocenters in the synthesis of complex compounds. It is thus of extraordinary importance for the synthesis of chiral drugs, dietary supplements, flavors, and fragrances, as well as novel materials with tunable and reconfigurable chiroptical properties or the assembly of complex natural products. Typically, enantiomerically pure catalysts are used for this purpose. To prepare enantiomerically pure ligands or organocatalysts, one can make use of the natural chiral pool. Ligands and organocatalysts with an atropisomeric biphenyl and binaphthyl system have become popular, as they are configurationally stable and contain a C2-symmetric skeleton, which has been found to be particularly privileged. For catalysts with opposite configurations, both product enantiomers can be obtained. Configurationally flexible biphenyl systems initially appeared to be unsuitable for this purpose, as they racemize after successful enantiomer separation and thus are neither storable nor afford a reproducible enantioselectivity. However, there are strategies that exploit the dynamics of such ligands to stereoconvergently enrich one of the catalyst enantiomers. This can be achieved, for example, by coordinating an enantiomerically pure additive to a ligand-metal complex, which results in deracemization of the configurationally flexible biphenyl system, thereby enriching the thermodynamically preferred diastereomer. In this Account, we present our strategy to design stereochemically flexible catalysts that combine the properties of supramolecular recognition, stereoconvergent alignment, and catalysis. Such systems are capable to recognize the chirality of the target product, leading to an increase in enantioselectivity during asymmetric catalysis. We have systematically developed and investigated these smart catalyst systems and have found ways to specifically design and synthesize them for various applications. In addition to (i) reaction product-induced chiral amplification, we have developed systems with (ii) intermolecular and (iii) intramolecular recognition, and successfully applied them in asymmetric catalysis. Our results pave the way for new applications such as temperature-controlled enantioselectivity, controlled inversion of enantioselectivity with the same chirality of the recognition unit, generation of positive nonlinear effects, and targeted design of autocatalytic systems through dynamic formation of transient catalysts. Understanding such systems is of enormous importance for catalytic processes leading to symmetry breaking and amplification of small imbalances of enantiomers and offer a possible explanation of homochirality of biological systems. In addition, we are learning how to target supramolecular interactions to enhance enantioselectivities in asymmetric catalysis through secondary double stereocontrol. Configurationally flexible catalysts will enable future resource-efficient development of asymmetric syntheses, as enantioselectivities can be fully switched by stereoselective alignment of the stereochemically flexible ligand core on demand.
Assuntos
Compostos de Bifenilo , Ligantes , Catálise , EstereoisomerismoRESUMO
Soai's asymmetric autocatalysis represents a highly remarkable example for spontaneous symmetry breaking and enantioselective amplification in the enantioselective alkylation of pyrimidine-5-carbaldehydes to the corresponding chiral pyrimidine alcohols. Recently, zinc hemiacetalate complexes, formed from pyrimidine-5-carbaldehydes and the chiral product alcohol, were identified by in situ high-resolution mass spectrometric measurements as highly active transient asymmetric catalysts in this autocatalytic transformation. To study the formation of such hemiacetals and their stereodynamic properties, we focused on the synthesis of coumarin homolog biaryl systems with carbaldehyde and alcohol substituents. Such systems are able to form hemiacetals by intramolecular cyclization. An interesting feature of the substituted biaryl backbone is that tropos and atropos systems can be obtained, enabling or disabling the intramolecular cyclization to hemiacetals. Biaryl structures with various functional groups were synthesized, and the equilibrium and stereodynamics between the closed and open structures were investigated by dynamic enantioselective HPLC (DHPLC). The enantiomerization barriers ΔGÇ and activation parameters ΔHÇ and ΔSÇ were determined from temperature dependent kinetic measurements.