Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 16(4): e0249878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857203

RESUMO

PURPOSE: Glioblastoma and anaplastic astrocytoma represent the most commonly encountered high-grade-glioma (HGG) in adults. Although both neoplasms are very distinct entities in context of epidemiology, clinical course and prognosis, their appearance in conventional magnetic resonance imaging (MRI) is very similar. In search for additional information aiding the distinction of potentially confusable neoplasms, histogram analysis of apparent diffusion coefficient (ADC) maps recently proved to be auxiliary in a number of entities. Therefore, our present exploratory retrospective study investigated whether ADC histogram profile parameters differ significantly between anaplastic astrocytoma and glioblastoma, reflect the proliferation index Ki-67, or are associated with the prognostic relevant MGMT (methylguanine-DNA methyl-transferase) promotor methylation status. METHODS: Pre-surgical ADC volumes of 56 HGG patients were analyzed by histogram-profiling. Association between extracted histogram parameters and neuropathology including WHO-grade, Ki-67 expression and MGMT promotor methylation status was investigated due to comparative and correlative statistics. RESULTS: Grade IV gliomas were more heterogeneous than grade III tumors. More specifically, ADCmin and the lowest percentile ADCp10 were significantly lower, whereas ADCmax, ADC standard deviation and Skewness were significantly higher in the glioblastoma group. ADCmin, ADCmax, ADC standard deviation, Kurtosis and Entropy of ADC histogram were significantly correlated with Ki-67 expression. No significant difference could be revealed by comparison of ADC histogram parameters between MGMT promotor methylated and unmethylated HGG. CONCLUSIONS: ADC histogram parameters differ significantly between glioblastoma and anaplastic astrocytoma and show distinct associations with the proliferative activity in both HGG. Our results suggest ADC histogram profiling as promising biomarker for differentiation of both, however, further studies with prospective multicenter design are wanted to confirm and further elaborate this hypothesis.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Glioblastoma/diagnóstico por imagem , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Interpretação Estatística de Dados , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética/normas , Feminino , Glioblastoma/genética , Humanos , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Supressoras de Tumor/genética
2.
Front Oncol ; 10: 206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158691

RESUMO

Background: Low-grade gliomas (LGG) in adults are usually slow growing and frequently asymptomatic brain tumors, originating from glial cells of the central nervous system (CNS). Although regarded formally as "benign" neoplasms, they harbor the potential of malignant transformation associated with high morbidity and mortality. Their complex and unpredictable tumor biology requires a reliable and conclusive presurgical magnetic resonance imaging (MRI). A promising and emerging MRI approach in this context is histogram based apparent diffusion coefficient (ADC) profiling, which recently proofed to be capable of providing prognostic relevant information in different tumor entities. Therefore, our study investigated whether histogram profiling of ADC distinguishes grade I from grade II glioma, reflects the proliferation index Ki-67, as well as the IDH (isocitrate dehydrogenase) mutation and MGMT (methylguanine-DNA methyl-transferase) promotor methylation status. Material and Methods: Pre-treatment ADC volumes of 26 LGG patients were used for histogram-profiling. WHO-grade, Ki-67 expression, IDH mutation, and MGMT promotor methylation status were evaluated. Comparative and correlative statistics investigating the association between histogram-profiling and neuropathology were performed. Results: Almost the entire ADC profile (p25, p75, p90, mean, median) was significantly lower in grade II vs. grade I gliomas. Entropy, as second order histogram parameter of ADC volumes, was significantly higher in grade II gliomas compared with grade I gliomas. Mean, maximum value (ADCmax) and the percentiles p10, p75, and p90 of ADC histogram were significantly correlated with Ki-67 expression. Furthermore, minimum ADC value (ADCmin) was significantly associated with MGMT promotor methylation status as well as ADC entropy with IDH-1 mutation status. Conclusions: ADC histogram-profiling is a valuable radiomic approach, which helps differentiating tumor grade, estimating growth kinetics and probably prognostic relevant genetic as well as epigenetic alterations in LGG.

3.
Oncotarget ; 9(53): 30106-30114, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046391

RESUMO

The diagnosis of giant cell-rich lesions of bone can be challenging if radiological findings are ambiguous and tissue of the biologically deciding component is underrepresented in biopsy specimens. The frequent association of giant cell tumor of bone (GCT) and chondroblastoma (CB) with (secondary) aneurysmal bone cysts (ABC) may further impede correct classification. The present study evaluates the potentials and limitations of mutation-specific histone H3.3 and DOG1 immunohistochemistry, Sanger-/next generation sequencing (NGS) and FISH analysis in the differential diagnosis of 23 GCT, 14 CB and 19 ABC. All morphologically typical GCT and CB harbored mutations in the H3F3A or H3F3B gene, respectively. These were, except for one uncommon G34L mutation in a GCT, reliably and specifically detected by mutation-specific H3.3 G34W or H3.3 K36M immunohistochemistry and DNA sequencing. In the diagnostic substantiation of CB, DOG1 staining was less sensitive compared to H3.3 K36M immunohistochemistry. 47% of ABC specifically showed translocations of the USP6 gene, while mutations in H3F3A/B were absent. Based on the results of this study, we conclude that mutation-specific H3.3 immunohistochemistry (selectively complemented with NGS-based DNA sequencing) and USP6 FISH analysis enable a reliable diagnostic distinction of GCT, CB and ABC of morphologically and radiologically difficult cases.

4.
Eur Urol ; 69(4): 592-598, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26542947

RESUMO

BACKGROUND: Gleason grading is the strongest prognostic parameter in prostate cancer. Gleason grading is categorized as Gleason ≤ 6, 3 + 4, 4 + 3, 8, and 9-10, but there is variability within these subgroups. For example, Gleason 4 components may range from 5-45% in a Gleason 3 + 4 = 7 cancer. OBJECTIVE: To assess the clinical relevance of the fractions of Gleason patterns. DESIGN, SETTING, AND PARTICIPANTS: Prostatectomy specimens from 12823 consecutive patients and of 2971 matched preoperative biopsies for which clinical data with an annual follow-up between 2005 and 2014 were available from the Martini-Klinik database. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: To evaluate the utility of quantitative grading, the fraction of Gleason 3, 4, and 5 patterns seen in biopsies and prostatectomies were recorded. Gleason grade fractions were compared with prostatectomy findings and prostate-specific antigen recurrence. RESULTS AND LIMITATIONS: Our data suggest a striking utility of quantitative Gleason grading. In prostatectomy specimens, there was a continuous increase of the risk of prostate-specific antigen recurrence with increasing percentage of Gleason 4 fractions with remarkably small differences in outcome at clinically important thresholds (0% vs 5%; 40% vs 60% Gleason 4), distinguishing traditionally established prognostic groups. Also, in biopsies, the quantitative Gleason scoring identified various intermediate risk groups with respect to Gleason findings in corresponding prostatectomies. Quantitative grading may also reduce the clinical impact of interobserver variability because borderline findings such as tumors with 5%, 40%, or 60% Gleason 4 fractions and very small Gleason 5 fractions (with pivotal impact on the Gleason score) are disclaimed. CONCLUSIONS: Quantitative Gleason pattern data should routinely be provided in addition to Gleason score categories, both in biopsies and in prostatectomy specimens. PATIENT SUMMARY: Gleason score is the most important prognostic parameter in prostate cancer, but prone to interobserver variation. The results of our study show that morphological aspects that define the Gleason grade in prostate cancer represent a continuum. Quantitation of Gleason patterns provides clinically relevant information beyond the traditional Gleason grading categories ≤ 3 + 3, 3 + 4, 4 + 3, 8, 9 -1 0. Quantitative Gleason scoring can help to minimize variations between different pathologists and substantially aid in optimized therapy decision-making.


Assuntos
Biópsia , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Idoso , Intervalo Livre de Doença , Alemanha , Humanos , Calicreínas/sangue , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Variações Dependentes do Observador , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA