Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cerebellum ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769243

RESUMO

Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.

2.
Cereb Cortex ; 33(10): 6366-6381, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36573440

RESUMO

Prior studies suggest that the cerebellum contributes to the prediction of action sequences as well as the detection of social violations. In this dynamic causal modeling study, we explored the effective connectivity of the cerebellum with the cerebrum in processing social action sequences. A first model aimed to explore functional cerebello-cerebral connectivity when learning trait/stereotype-implying action sequences. We found many significant bidirectional connectivities between mentalizing areas of the cerebellum and the cerebrum including the temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC). Within the cerebrum, we found significant connectivity between the right TPJ and the mPFC, and between the TPJ bilaterally. A second model aimed to investigate cerebello-cerebral connectivity when conflicting information arises. We found many significant closed loops between the cerebellum and cerebral mentalizing (e.g. dorsal mPFC) and executive control areas (e.g. medial and lateral prefrontal cortices). Additional closed loops were found within the cerebral mentalizing and executive networks. The current results confirm prior research on effective connectivity linking the cerebellum with mentalizing areas in the cerebrum for predicting social sequences, and extend it to cerebral executive areas for social violations. Overall, this study emphasizes the critical role of cerebello-cerebral connectivity in understanding social sequences.


Assuntos
Cérebro , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Mapeamento Encefálico
3.
Cogn Affect Behav Neurosci ; 23(6): 1482-1499, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821755

RESUMO

Previous studies have identified that the posterior cerebellum, which plays a role in processing temporal sequences in social events, is consistently and robustly activated when we predict future action sequences based on personality traits (Haihambo Haihambo et al. Social Cognitive and Affective Neuroscience 17(2), 241-251, 2022) and intentions (Haihambo et al. Cognitive, Affective, and Behavioral Neuroscience 23(2), 323-339, 2023). In the current study, we investigated whether these cerebellar areas are selectively activated when we predict the sequences of (inter)actions based on protagonists' preferences. For the first time, we also compared predictions based on person-to-person interactions or single person activities. Participants were instructed to predict actions of one single or two interactive protagonists by selecting them and putting them in the correct chronological order after being informed about one of the protagonists' preferences. These conditions were contrasted against nonsocial (involving objects) and nonsequencing (prediction without generating a sequence) control conditions. Results showed that the posterior cerebellar Crus 1, Crus 2, and lobule IX, alongside the temporoparietal junction and dorsal medial prefrontal cortex were more robustly activated when predicting sequences of behavior of two interactive protagonists, compared to one single protagonist and nonsocial objects. Sequence predictions based on one single protagonist recruited lobule IX activation in the cerebellum and more ventral areas of the medial prefrontal cortex compared to a nonsocial object. These cerebellar activations were not found when making predictions without sequences. Together, these findings suggest that cerebellar mentalizing areas are involved in social mentalizing processes which require temporal sequencing, especially when they involve social interactions, rather than behaviors of single persons.


Assuntos
Cerebelo , Mentalização , Humanos , Cerebelo/fisiologia , Córtex Pré-Frontal/fisiologia , Imageamento por Ressonância Magnética/métodos , Mentalização/fisiologia , Transtornos do Comportamento Social , Mapeamento Encefálico/métodos
4.
Cerebellum ; 22(4): 559-577, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35648333

RESUMO

Recent research has suggested that the posterior cerebellum encodes predictions and sequences of social actions, and also supports detecting inconsistent trait-implying actions of individuals as discussed by Pu et al. (2020, 2021). However, little is known about the role of the posterior cerebellum in detecting sequencing and inconsistencies by a group of individuals during social interaction. Therefore, the present study investigates these cerebellar functions during inconsistent trait-implying actions in a cooperative context. We presented scenarios in which two fictitious protagonists work together to accomplish a common (positive or negative) goal, followed by six sentences describing actions that implied a personality trait of the protagonists. Participants had to memorize the sequence of these actions. Crucially, the implied trait of the actions of the first protagonist contributed to achieving the goal, whereas the implied trait of the second protagonist was either consistent or inconsistent with that goal. As comparison, we added control conditions where participants had to memorize sequences of nonsocial events (implying the same characteristic of two objects), or simply read the social actions without memorizing their order. We found that the posterior cerebellum was activated while memorizing the sequence of social actions compared to simply reading these actions. More importantly, the cerebellar Crus was more strongly activated when detecting inconsistent (as opposed to consistent) actions, especially when inconsistent negative actions impeded a positive goal, relative to consistent negative actions that supported a negative goal. In conclusion, these findings confirm the crucial role of the posterior cerebellum in memorizing social action sequences and extend the cerebellar function in identifying inconsistencies in an individual's actions in a social collaborative context.


Assuntos
Cerebelo , Idioma , Humanos
5.
Cerebellum ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608227

RESUMO

Although the human cerebellum has a surface that is about 80% of that of the cerebral cortex and has about four times as many neurons, its functional organization is still very much uncharted. Despite recent attempts to provide resting-state and task-based parcellations of the cerebellum, these two approaches lead to large discrepancies. This article describes a comprehensive task-based functional parcellation of the human cerebellum based on a large-scale functional database, NeuroSynth, involving an unprecedented diversity of tasks, which were reliably associated with ontological key terms referring to psychological functions. Involving over 44,500 participants from this database, we present a parcellation that exhibits replicability with earlier resting-state parcellations across cerebellar and neocortical structures. The functional parcellation of the cerebellum confirms the major networks revealed in prior work, including sensorimotor, directed (dorsal) attention, divided (ventral) attention, executive control, mentalizing (default mode) networks, tiny patches of a limbic network, and also a unilateral language network (but not the visual network), and the association of these networks with underlying ontological key terms confirms their major functionality. The networks are revealed at locations that are roughly similar to prior resting-state cerebellar parcellations, although they are less symmetric and more fragmented across the two hemispheres. This functional parcellation of the human cerebellum and associated key terms can provide a useful guide in designing studies to test specific functional hypotheses and provide a reference for interpreting the results.

6.
Cogn Affect Behav Neurosci ; 22(5): 1090-1107, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35411417

RESUMO

Recent research has indicated that the posterior cerebellum plays a crucial role in social cognition by encoding sequences of social actions. This study investigates its role in learning sequences of stereotype-implying actions by group members. We presented a set of five sentences that each described a group member who performed either stereotype-consistent or inconsistent actions. Participants were instructed to memorize the temporal order of the sentences and infer a common stereotype of the group. As a comparison, we included control conditions where participants had to memorize sequences of nonsocial consistent events or simply read stereotype-consistent sentences without memorizing their order. The results showed that the posterior cerebellum was strongly activated when participants were memorizing the order of the social actions, as opposed to simply reading these social actions. More importantly, when the social actions were inconsistent as opposed to consistent with the stereotype of the group, the posterior cerebellum was activated more strongly. This activation occurred together with cortical recruitment of the mentalizing network involving the dorsomedial prefrontal cortex (dmPFC) during social actions, and additionally the conflict monitoring network involving the lateral prefrontal cortex (PFC) and posterior medial frontal cortex (pmFC) during stereotype-inconsistent actions. These findings suggest that the cerebellum supports not only learning of low-level action sequences, but also of their high-level social implications.


Assuntos
Imageamento por Ressonância Magnética , Mentalização , Cerebelo/fisiologia , Humanos , Mentalização/fisiologia , Córtex Pré-Frontal/fisiologia , Leitura
7.
Cogn Affect Behav Neurosci ; 22(3): 467-491, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34811709

RESUMO

This study tests the hypothesis that the posterior cerebellum is involved in social cognition by identifying and automatizing sequences of social actions. We applied a belief serial reaction time task (Belief SRT task), which requires mentalizing about two protagonists' beliefs about how many flowers they receive. The protagonists' beliefs could either be true or false depending on their orientation (true belief: oriented towards and directly observing the flowers; or false belief: oriented away and knowing only prior information about flowers). A Control SRT task was created by replacing protagonists and their beliefs with shapes and colors. Participants were explicitly told that there was a standard sequence related to the two protagonists' belief orientations (Belief SRT task) or the shapes' colors (Control SRT task). Both tasks included a Training phase where the standard sequence was repeated and a Test phase where this standard sequence was interrupted by random sequences. As hypothesized, compared with the Control SRT task, the Belief SRT task recruited the posterior cerebellar Crus II and the temporoparietal junction (TPJ) more. Faster response times were correlated with less Crus II activation and with more TPJ activation, suggesting that the Crus II supported automatizing the belief sequence while the TPJ supported inferring the protagonists' beliefs. Also as hypothesized, compared with an implicit version of the Belief SRT task (i.e., participants did not know about the existence of sequences; Ma, Pu, et al., 2021b), the cerebellar Crus I &II was engaged less during initial training and automatic application of the sequence, and the cortical TPJ was activated more in processing random sequences.


Assuntos
Aprendizagem , Mentalização , Cerebelo , Humanos , Tempo de Reação , Cognição Social
8.
Cerebellum ; 21(5): 733-741, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34694590

RESUMO

Recent advances in social neuroscience have highlighted the critical role of the cerebellum and especially the posterior cerebellar Crus in social mentalizing (i.e., theory of mind). Research in the past 5 years has provided growing evidence supporting the view that the posterior cerebellum builds internal action models of our social interactions to predict how other people's actions will be executed, and what our most likely responses to these actions will be. This paper presents an overview of a series of fMRI experiments on novel tasks involving a combination of (a) the learning or generation of chronological sequences of social actions either in an explicit or implicit manner, which (b) require social mentalizing on another person's mental state such as goals, beliefs, and implied traits. Together, the results strongly confirm the central role of the posterior cerebellar Crus in identifying and automatizing action sequencing during social mentalizing, and in predicting future action sequences based on social mentalizing inferences about others. This research program has important implications: It provides for the first time (a) fruitful starting points for diagnosing and investigating social sequencing dysfunctions in a variety of mental disorders which have also been related to cerebellar dysfunctions, (b) provides the necessary tools for testing whether non-invasive neurostimulation targeting the posterior cerebellum has a causal effect on social functioning, and (c) whether these stimulation techniques and training programs guided by novel cerebellar social sequencing insights, can be exploited to increase posterior cerebellar plasticity in order to alleviate social impairments in mental disorders.


Assuntos
Cerebelo , Mentalização , Cerebelo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Mentalização/fisiologia
9.
Cerebellum ; 21(6): 1123-1134, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34637054

RESUMO

Recent advances in social neuroscience have highlighted the critical role of the cerebellum in social cognition, and especially the posterior cerebellum. Studies have supported the view that the posterior cerebellum builds internal action models of our social interactions to predict how other people's actions will be executed and what our most likely responses are to these actions. This mechanism allows to better anticipate action sequences during social interactions in an automatic and intuitive way and to fine-tune these anticipations, making it easier to understand other's social behaviors and mental states (e.g., beliefs, intentions, traits). In this paper, we argue that the central role of the posterior cerebellum in identifying and automatizing social action sequencing provides a fruitful starting point for investigating social dysfunctions in a variety of clinical pathologies, such as autism, obsessive-compulsive and bipolar disorder, depression, and addiction. Our key hypothesis is that dysfunctions of the posterior cerebellum lead to under- or overuse of inflexible social routines and lack of plasticity for learning new, more adaptive, social automatisms. We briefly review past research supporting this view and propose a program of research to test our hypothesis. This approach might alleviate a variety of mental problems of individuals who suffer from inflexible automatizations that stand in the way of adjustable and intuitive social behavior, by increasing posterior cerebellar plasticity using noninvasive neurostimulation or neuro-guided training programs.


Assuntos
Cerebelo , Comportamento Social , Humanos , Cerebelo/fisiologia
10.
Cogn Affect Behav Neurosci ; 21(5): 970-992, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34100254

RESUMO

Recent studies have documented the involvement of the posterior cerebellar Crus (I & II) in social mentalizing, when sequences play a critical role. We investigated for the first time implicit learning of belief sequences. We created a novel task in which true and false beliefs of other persons were alternated in an adapted serial reaction time (SRT) paradigm (Belief SRT task). Participants observed two protagonists whose beliefs concerning reality were manipulated, depending on their orientation toward the scene (true belief: directly observing the situation) or away from it (false belief: knowing only the prior situation). Unbeknownst to the participants, a fixed sequence related to the two protagonists' belief orientations was repeated throughout the task (Training phase); and to test the acquisition of this fixed sequence, it was occasionally interrupted by random sequences (Test phase). As a nonsocial control, the two protagonists and their orientations were replaced by two different shapes of different colors respectively (Control SRT task). As predicted, the posterior cerebellar Crus I & II were activated during the Belief SRT task and not in the Control SRT task. The Belief SRT task revealed that Crus I was activated during the initial learning of the fixed sequence (Training phase) and when this learned sequence was interrupted by random sequences (Test phase). Moreover, Crus II was activated during occasional reappearance of the learned sequence in the context of sequence violations (Test phase). Our results demonstrate the contribution of the posterior cerebellar Crus during implicit learning and predicting new belief sequences.


Assuntos
Aprendizagem , Mentalização , Cerebelo , Cognição , Humanos , Tempo de Reação
11.
Neuroimage ; 206: 116326, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678499

RESUMO

This analysis explores the effective connectivity of the cerebellum with the cerebral cortex during the generation of correct sequences of social and non-social events, using dynamic causal modelling (DCM). Our hypothesis is that during human evolution, the cerebellum's function evolved from a mere coordinator of fluent sequences of motions and actions, to an interpreter of action sequences without overt movements that are important for social understanding. This requires efficient neural communication between the cerebellum and cerebral cortex. In a functional magnetic resonance imaging (fMRI) study, participants generated the correct chronological order of (non-)social events, including stories involving mechanical and social scripts, and true or false beliefs. Across all stories, a DCM analysis of these data revealed, as predicted, bidirectional (closed-loop) connections linking the bilateral posterior cerebellum with the bilateral temporo-parietal junction (TPJ) associated with behavior understanding, and this connectivity pattern was almost entirely significant. There was also a unidirectional connection from the right posterior cerebellum to the precuneus, but no direct connections with the dorsomedial prefrontal cortex (dmPFC). Moreover, all connections emanating from the bilateral posterior cerebellum were negative, indicative of some kind of error signal. Within the cerebral cortex, there were unidirectional connections from the bilateral TPJ to the dmPFC, as well as bidirectional connections between the precuneus and dmPFC, and between the bilateral TPJ. These results confirm that the effective connectivity between the posterior cerebellum and mentalizing areas in the cerebral cortex play a critical role in the understanding and construction of the correct order of social and non-social action sequences.


Assuntos
Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Percepção Social , Teorema de Bayes , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Mentalização , Vias Neurais , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
12.
Cogn Affect Behav Neurosci ; 20(4): 798-815, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32495270

RESUMO

Recent research has indicated that the cerebellum is responsible for social judgments, such as making trait attributions. The present study investigated the function of the posterior cerebellum in supporting sequence learning linked to trait inferences about persons. We conducted a memory paradigm that required participants to learn a given temporal order of six behavioral sentences that all implied the same personality trait of the protagonist. We then asked participants to infer the trait of the person and to recall the correct order of the sentences and to rate their confidence in their trait judgments and retrieval accuracy. Two control conditions were created: a nonsocial comparison control, involving six nonsocial sentences implying a feature of an object, and a nonsocial nonsequential reading baseline condition. While learning the specific sequence of the sentences, the posterior cerebellum (Crus 2) was more activated for social trait-related sequencing than nonsocial object-related sequencing. Also, given a longer duration to learn the sequences, the precuneus and posterior cingulate cortex were more activated when participants attempted to retrieve the sequences linked to social traits. In addition, confidence in retrieving the correct order of the social sequences modulated the posterior cerebellum (Crus 1) given a longer duration to learn. Our findings highlight the important function of the posterior cerebellum in supporting an active process of sequencing trait-implying actions.


Assuntos
Cerebelo/fisiologia , Julgamento/fisiologia , Rememoração Mental/fisiologia , Metacognição/fisiologia , Personalidade/fisiologia , Aprendizagem Seriada/fisiologia , Cognição Social , Adulto , Mapeamento Encefálico , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Adulto Jovem
13.
Cerebellum ; 19(6): 833-868, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32632709

RESUMO

The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions.


Assuntos
Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Consenso , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Cognição Social , Mapeamento Encefálico/métodos , Humanos , Mentalização/fisiologia , Desempenho Psicomotor/fisiologia , Comportamento Social
14.
Neuroimage ; 144(Pt A): 241-252, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27566262

RESUMO

This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Função Executiva/fisiologia , Teoria da Mente/fisiologia , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
15.
Neuroimage ; 104: 336-46, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25241083

RESUMO

Does the processing of social category-related versus trait-related information generate a different pattern of brain activation? In this fMRI study, we compared the processing of behaviors performed by a member of a social category versus an individual, both possessing similar personality traits. Based on previous behavioral studies we predicted that the processing of social category-related information would recruit more activation in brain areas related to mentalizing than individual trait-related information. Participants read sentences describing behaviors performed by a member of a social category (of which the stereotype involves a given trait) or by an individual possessing the same trait. These behavioral sentences varied on both valence (positive versus negative) and consistency (consistent versus inconsistent) with regard to the social category or trait. The results revealed that social category-related behavioral information showed more activation in mentalizing areas (medial prefrontal cortex, anterior temporal lobe, bilateral temporo-parietal junction, posterior cingulate cortex) than trait-related information. This increased activation is interpreted in terms of the impact of autobiographical memories, greater variance among members of social categories than individual traits, a higher construal level (i.e., abstractness), and larger perceived group size. Additionally, inconsistent as opposed to consistent information showed more activation in the right temporo-parietal junction and left lingual gyrus.


Assuntos
Encéfalo/fisiologia , Personalidade/fisiologia , Percepção Social , Estereotipagem , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
16.
Soc Cogn Affect Neurosci ; 19(1)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38536051

RESUMO

Social norms are pivotal in guiding social interactions. The current study investigated the potential contribution of the posterior cerebellum, a critical region involved in perceiving and comprehending the sequential dynamics of social actions, in detecting actions that either conform to or deviate from social norms. Participants engaged in a goal-directed task in which they observed others navigating towards a goal. The trajectories demonstrated either norm-violating (trespassing forbidden zones) or norm-following behaviors (avoiding forbidden zones). Results revealed that observing social norm-violating behaviors engaged the bilateral posterior cerebellar Crus 2 and the right temporoparietal junction (TPJ) from the mentalizing network, and the parahippocampal gyrus (PHG) to a greater extent than observing norm-following behaviors. These mentalizing regions were also activated when comparing social sequences against non-social and non-sequential control conditions. Reproducing norm-violating social trajectories observed earlier, activated the left cerebellar Crus 2 and the right PHG compared to reproducing norm-following trajectories. These findings illuminate the neural mechanisms in the cerebellum associated with detecting norm transgressions during social navigation, emphasizing the role of the posterior cerebellum in detecting and signaling deviations from anticipated sequences.


Assuntos
Mapeamento Encefálico , Cerebelo , Imageamento por Ressonância Magnética , Humanos , Cerebelo/fisiologia , Cerebelo/diagnóstico por imagem , Masculino , Feminino , Adulto Jovem , Adulto , Imageamento por Ressonância Magnética/métodos , Normas Sociais , Percepção Social , Comportamento Social , Mentalização/fisiologia
17.
Soc Cogn Affect Neurosci ; 19(1)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554289

RESUMO

Spatial trajectory planning and execution in a social context play a vital role in our daily lives. To study this process, participants completed a goal-directed task involving either observing a sequence of preferred goals and self-planning a trajectory (Self Sequencing) or observing and reproducing the entire trajectory taken by others (Other Sequencing). The results indicated that in the observation phase, witnessing entire trajectories created by others (Other Sequencing) recruited cerebellar mentalizing areas (Crus 2 and 1) and cortical mentalizing areas in the precuneus, ventral and dorsal medial prefrontal cortex and temporo-parietal junction more than merely observing several goals (Self Sequencing). In the production phase, generating a trajectory by oneself (Self Sequencing) activated Crus 1 more than merely reproducing the observed trajectories from others (Other Sequencing). Additionally, self-guided observation and planning (Self Sequencing) activated the cerebellar lobules IV and VIII more than Other Sequencing. Control conditions involving non-social objects and non-sequential conditions where the trajectory did not have to be (re)produced revealed no differences with the main Self and Other Sequencing conditions, suggesting limited social and sequential specificity. These findings provide insights into the neural mechanisms underlying trajectory observation and production by the self or others during social navigation.


Assuntos
Cerebelo , Mentalização , Humanos , Córtex Pré-Frontal , Lobo Parietal , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
18.
Neurosci Biobehav Rev ; 146: 105045, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646260

RESUMO

BYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. NEUROSCI BIOBEHAV REV, 2022. - This review focuses on autistic adults and serves 4 purposes: (1) providing an overview of their difficulties regarding mentalizing (understanding others' mental states) and narrative coherence (structured storytelling), (2) highlighting the relations between both skills by examining behavioral observations and shared neural substrates, (3) providing an integrated perspective regarding novel diagnostic tools and support services, and (4) raising awareness of adult autism. We suggest that mentalizing and narrative coherence are related at the behavioral level and neural level. In addition to the traditional mentalizing network, the cerebellum probably serves as an important hub in shared cerebral networks implicated in mentalizing and narrative coherence. Future autism research and support services should tackle new questions within a framework of social cerebellar (dys)functioning.


Assuntos
Transtorno Autístico , Mentalização , Humanos , Adulto , Cerebelo , Comunicação
19.
Soc Cogn Affect Neurosci ; 18(1)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35866545

RESUMO

The posterior cerebellum contributes to dynamic social cognition by building representations and predictions about sequences in which social interactions typically take place. However, the extent to which violations of prior social expectations during human interaction activate the cerebellum remains largely unknown. The present study examined inconsistent actions, which violate the expectations of desired goal outcomes, by using a social navigation paradigm in which a protagonist presented a gift to another agent that was liked or not. As an analogous non-social control condition, a pen was transported via an assembly line and filled with ink that matched the pen's cap or not. Participants (n = 25) were required to memorize and subsequently reproduce the sequence of the protagonist's or pen's trajectory. As hypothesized, expectation violations in social (vs non-social) sequencing were associated with activation in the posterior cerebellum (Crus 1/2) and other cortical mentalizing regions. In contrast, non-social (vs social) sequencing recruited cerebellar lobules IV-V, the action observation network and the navigation-related parahippocampal gyrus. There was little effect in comparison with a social non-sequencing control condition, where participants only had to observe the trajectory. The findings provide further evidence of cerebellar involvement in signaling inconsistencies in social outcomes of goal-directed navigation.


Assuntos
Cerebelo , Cognição , Humanos , Cerebelo/fisiologia , Cognição/fisiologia , Interação Social , Motivação , Emoções , Imageamento por Ressonância Magnética , Mapeamento Encefálico
20.
Acta Psychol (Amst) ; 236: 103918, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071947

RESUMO

Studying autism might be a complex endeavor due to its clinical heterogeneity. Little is currently known about potential sex differences in autistic adults, especially regarding mentalizing and narrative coherence. In this study, male and female participants told a personal story about one of their most positive and most negative life events and performed two mentalizing tasks. One of these mentalizing tasks was a recently developed Picture and Verbal Sequencing task that has shown cerebellar recruitment, and which requires mentalizing in a sequential context (i.e., participants chronologically ordered scenarios that required true and false belief mentalizing). Our preliminary comparison shows that males were faster and more accurate on the Picture Sequencing task compared to female participants when ordering sequences involving false beliefs, but not true beliefs. No sex differences were found for the other mentalizing and narrative tasks. These results highlight the importance of looking at sex differences in autistic adults and provide a possible explanation for sex-related differences in daily life mentalizing functions, which suggest a need for more sensitive diagnosis and tailored support.


Assuntos
Transtorno Autístico , Mentalização , Teoria da Mente , Humanos , Masculino , Adulto , Feminino , Narração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA