Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091722

RESUMO

Circular RNAs (circRNAs) are noncoding RNAs abundant in brain tissue, and many are derived from activity-dependent, linear mRNAs encoding for synaptic proteins, suggesting that circRNAs may directly or indirectly play a role in regulating synaptic development, plasticity, and function. However, it is unclear if the circular forms of these RNAs are similarly regulated by activity and what role these circRNAs play in developmental plasticity. Here, we employed transcriptome-wide analysis comparing differential expression of both mRNAs and circRNAs in juvenile mouse primary visual cortex (V1) following monocular deprivation (MD), a model of developmental plasticity. Among the differentially expressed mRNAs and circRNAs following 3-day MD, the circular and the activity-dependent linear forms of the Homer1 gene, circHomer1 and Homer1a respectively, were of interest as their expression changed in opposite directions: circHomer1 expression increased while the expression of Homer1a decreased following MD. Knockdown of circHomer1 prevented the depression of closed-eye responses normally observed after 3-day MD. circHomer1-knockdown led to a reduction in average dendritic spine size prior to MD, but critically there was no further reduction after 3-day MD, consistent with impaired structural plasticity. circHomer1-knockdown also prevented the reduction of surface AMPA receptors after 3-day MD. Synapse-localized puncta of the AMPA receptor endocytic protein Arc increased in volume after MD but were smaller in circHomer1-knockdown neurons, suggesting that circHomer1 regulates plasticity through mechanisms of activity-dependent AMPA receptor endocytosis. Thus, activity-dependent circRNAs regulate developmental synaptic plasticity, and our findings highlight the essential role of circHomer1 in V1 plasticity induced by short-term MD.

2.
Elife ; 102021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34270411

RESUMO

Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.


Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Animais , Cálcio , Sinalização do Cálcio , Genótipo , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Córtex Visual/citologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA