Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508430

RESUMO

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Assuntos
Galactosilceramidase/genética , Terapia Genética/métodos , Leucodistrofia de Células Globoides/patologia , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Galactosilceramidase/metabolismo , Vetores Genéticos/administração & dosagem , Leucodistrofia de Células Globoides/sangue , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Recidiva
2.
Oncolytic Virother ; 7: 43-51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765912

RESUMO

BACKGROUND: Human species C adenovirus serotype 5 (Ad5) is the archetype oncolytic adenovirus and has been used in the vast majority of preclinical and clinical tests. While Ad5 can be robust, species C Ad6 has lower seroprevalence, side effects, and appears to be more potent as a systemic therapy against a number of tumors than Ad5. Historically, there have only been four species C human adenoviruses: serotypes 1, 2, 5, and 6. More recently a new species C adenovirus, Ad57, was identified. Ad57 is most similar to Ad6 with virtually all variation in their capsid proteins occurring in the hypervariable regions (HVRs) of their hexon proteins. Most adenovirus neutralizing antibodies target the HVRs on adenoviruses. This led us to replace the hexon HVRs in Ad6 with those from Ad57 to create a new virus called Ad657 and explore this novel species C platform's utility as an oncolytic virus. METHODS: The HVR region from Ad57 was synthesized and used to replace the Ad6 HVR region by homologous recombination in bacteria generating a new viral platform that we call Ad657. Replication-competent Ad5, Ad6, and Ad657 were compared in vitro and in vivo for liver damage and oncolytic efficacy against prostate cancers after single intravenous treatment in mice. RESULTS: Ad5, Ad6, and Ad657 had similar in vitro oncolytic activity against human prostate cancer cells. Ad5 provoked the highest level of liver toxicity after intravenous injection and Ad657 caused the least damage in mice. Previous data demonstrated that Ad6 was superior to Ad5 at killing distant subcutaneous prostate cancer tumors in mouse models after a intravenous injection. Given this, Ad657 was compared to the Ad6 benchmark virus by single intravenous injection into mice bearing subcutaneous human DU145 prostate cancers. Under these conditions, Ad657 first infected the liver and then reached distant tumors. Both Ad6 and Ad657 mediated significant delays in tumor growth and extension of survival with Ad6 mediating higher efficacy. CONCLUSIONS: These data suggest that Ad657 may have utility as a local or systemic oncolytic virotherapy for prostate cancers. These data also lay the foundation for serotype-switching with oncolytic species C Ads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA