Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(13): 2892-2899, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38465518

RESUMO

The use of DEHP (diethylhexyl phthalate) is now banned for most applications in Europe; the exception is for blood bags, where its toxicity is overshadowed by its ability to extend the storage life of red blood cells. Another plasticiser, BTHC (butanoyl trihexyl citrate), is used in paediatric blood bags but does not stabilise blood cells as effectively. Interactions between plasticisers and lipids are investigated with a phospholipid, DMPC, to understand the increased stability of blood cells in the presence of DEHP as well as bioaccumulation and identify differences with BTHC. Mixed monolayers of DMPC and DEHP or BTHC were studied on Langmuir troughs where surface pressure/area isotherms can be measured. Neutron reflection measurements were made to determine the composition and structure of these mixed layers. A large amount of plasticiser can be incorporated into a DMPC monolayer but once an upper limit is reached, plasticiser is selectively removed from the interface at high surface pressures. The upper limit is found to occur between 40-60 mol% for DEHP and 20-40 mol% for BTHC. The areas per molecule are also different with DEHP being in the range of 50-100 Å2 and BTHC being 65-120 Å2. Results indicate that BTHC does not fit as well as DEHP in DMPC monolayers which could help explain the differences observed with regards to the stability of blood cells.


Assuntos
Butiratos , Dietilexilftalato , Humanos , Criança , Fosfolipídeos , Dimiristoilfosfatidilcolina , Preservação de Sangue/métodos
2.
Mol Pharm ; 19(4): 1068-1077, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35226500

RESUMO

Lipid nanocapsules (LNCs) are increasingly being used for various drug delivery applications due to their versatile nature and ability to carry a wide variety of therapeutic drug molecules. In the present investigation, small-angle X-ray (SAXS) and neutron scattering (SANS) techniques were used to elucidate the structure of LNCs. Overall, size measurements obtained from SAXS and SANS techniques were complemented with dynamic light scattering, zeta potential, and cryogenic transmission electron microscopy measurements. The structural aspects of LNCs can be affected by drug loading and the properties of the drug. Here, the impact of drug loading on the overall structure was evaluated using DF003 as a model drug molecule. LNCs with varying compositions were prepared using a phase inversion method. Combined analysis of SAXS and SANS measurements indicated the presence of a core-shell structure in the LNCs. Further, the drug loading did not alter the overall core-shell structure of the LNCs. SANS data revealed that the core size remained unchanged with a radius of 20.0 ± 0.9 nm for unloaded LNCs and 20.2 ± 0.6 nm for drug-loaded LNCs. Furthermore, interestingly, the shell becomes thicker in an order of ∼1 nm in presence of the drug compared to the shell thickness of unloaded LNCs as demonstrated by SAXS data. This can be correlated with the strong association of hydrophilic DF003 with Kolliphor HS 15, a polyethylene glycol-based surfactant that predominantly makes up the shell, resulting in a drug-rich hydrated shell.


Assuntos
Nanocápsulas , Lipídeos/química , Nanocápsulas/química , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Langmuir ; 35(1): 222-228, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30516387

RESUMO

Quartz crystal microbalance with dissipation (QCM-D) monitoring is used to investigate the adsorption processes at liquid-solid interfaces and applied increasingly to characterize viscoelastic properties of complex liquids. Here, we contribute new insights into the latter field by using QCM-D to investigate the structure near the interface and the high-frequency viscoelastic properties of charge-stabilized polystyrene particles (radius 37 nm) dispersed in water. The study reveals changes with increasing ionic strength and particle concentration. Replacing water with a dispersion is usually expected to give rise to a decrease in frequency, f. Increases in both f and dissipation, D, were observed on exchanging pure water for particle dispersions at a low ionic strength. The QCM-D data are well-represented by a viscoelastic model, with viscosity increasing from 1.0 to 1.3 mPa s as the particle volume fraction changes from 0.005 to 0.07. This increase, higher than that predicted for noninteracting dispersions, can be explained by the charge repulsion between the particles giving rise to a higher effective volume fraction. It is concluded that the polystyrene particles did not adhere to the solid surface but rather were separated by a layer of pure dispersion medium. The QCM-D response was successfully represented using a viscoelastic Kelvin-Voigt model, from which it was concluded that the thickness of the dispersion medium layer was of the order of the particle-particle bulk separation, in the range of 50-250 nm, and observed to decrease with both particle concentration and addition of salt. Similar anomalous frequency and dissipation responses have been seen previously for systems containing weakly adherent colloidal particles and bacteria and understood in terms of coupled resonators. We demonstrate that surface attachment is not required for such phenomena to occur, but that a viscoelastic liquid separated from the oscillating surface by a thin Newtonian layer gives rise to similar responses.

4.
Langmuir ; 27(8): 4669-78, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21443213

RESUMO

The adsorption of sodium bis 2-ethylhexyl sulfosuccinate, NaAOT, to a sapphire surface from aqueous solution has been studied by neutron reflection at concentrations above the critical micelle concentration (cmc). Complementary measurements of the bulk structure were made with small-angle neutron scattering and grazing incidence small-angle neutron scattering. At a concentration of about 1% wt (10 × cmc), lamellar phase NaAOT was observed both at the surface and in the bulk. The structure seen at the interface for a solution of 2% wt NaAOT is a 35 ± 2 Å thick bilayer adsorbed to the sapphire surface at maximum packing density, followed by an aligned stack of fluctuating bilayers of thickness 51 ± 2 Å and with an area per molecule of 40 ± 2 Å(2). Each bilayer is separated by a water: at 25 °C, this layer is 148 ± 2 Å. A simple model for the reflectivity from fluctuating layers is presented, and for 2.0% wt NaAOT the fluctuations were found to have an amplitude of 25 ± 5 Å. The temperature sensitivity of the structure at the surface was investigated in the range 15-30 °C. The effect of temperature was pronounced, with the solvent layer becoming thinner and the volume occupied by the NaAOT molecules in a bilayer increasing with temperature. The amplitude of the fluctuations, however, is approximately temperature independent in this range. The adsorption of NaAOT at the sapphire surface resembles that previously found at hydrophilic and hydrophobic silica surfaces. The coexisting bulk lamellar phase has a spacing of layers similar to that observed at the surface. These observations are an indication that the major driving force for adsorption is self-assembly, independent of the chemical nature of the interface.

5.
Langmuir ; 26(6): 3902-10, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20163083

RESUMO

An extract from the seeds of the Moringa oleifera tree that is principally a low molecular mass protein is known to be efficient as a coagulating agent for water treatment. The present paper investigates the adsorption of the purified protein to silica interfaces in order to elucidate the mechanism of its function as a flocculent. Neutron reflection permits the determination of the structure and composition of interfacial layers at the solid/solution interface. Dense layers of protein with about 5.5 mg m(-2) were found at concentrations above 0.025% wt. The overall thickness with a dense layer in excess of 60 A at 0.05 wt % suggests strong co-operative binding rather than single isolated molecules. An ionic surfactant, sodium dodecyl sulfate, was also seen to coadsorb. This strong adsorption of protein in combination with the tendency for the protein to associate suggests a mechanism for destabilizing particulate dispersions to provide filterable water. This can occur even for the protein that has previously been identified as being of low mass (about 7 kDaltons) and thus is unlikely to be efficient in bridging or depletion flocculation.


Assuntos
Moringa oleifera/embriologia , Proteínas de Plantas/química , Sementes/química , Adsorção , Nêutrons , Dodecilsulfato de Sódio/química
6.
Langmuir ; 26(18): 14567-73, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20735040

RESUMO

Aerosol-OT (sodium bis 2-ethylhexyl sulfosuccinate or NaAOT) adsorbs to hydrophilic sapphire solid surfaces. The structure of the formed bilayer has been determined over the concentration range 0.2-7.4 mM NaAOT. It was found that the hydrocarbon tails pack at maximum packing limit at very low concentrations, and that the thickness of the bilayer was concentration-independent. The adsorption was found to increase with concentration, with the surfactant molecules packing closer laterally. The area per molecule was found to change from 138 ± 25 to 51 ± 4 A(2) over the concentration range studied, with the thickness of the layer being constant at 33 ± 2 A. Addition of small amounts of salt was found to increase the surface excess, with the bilayer being thinner with a slightly larger area per molecule. Addition of different salts of the same valency was found to have a very similar effect, as had the addition of NaOH and HCl. Hence, the effects of adding acid or base should be considered an effect of ionic strength rather than an effect of pH. Adsorption of NaAOT to the sapphire surface that carries an opposite charge to the anionic surfactant is similar in many respects to the adsorption reported previously for hydrophilic and hydrophobic silica surfaces. This suggests that the adsorption of NaAOT to a surface is driven primarily by NaAOT self-assembly rather than effects of electrostatic attraction to the interface.

7.
ACS Appl Mater Interfaces ; 11(24): 21314-21322, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31120236

RESUMO

Dispersions of cubic liquid crystalline phases, also known as cubosomes, have shown great promise as delivery vehicles for a wide range of medicines. Due to their ordered structure, comprising alternating hydrophilic and hydrophobic domains, cubosomes possess unique delivery properties and compatibility with both water-soluble and -insoluble drugs. However, the drug delivery mechanism and cubosome interaction with human cells and bacteria are still poorly understood. Herein, we reveal how cubosomes loaded with the human cathelicidin antimicrobial peptide LL-37, a system with high bacteria-killing effect, interact with the bacterial membrane and provide new insights into the eradication mechanism. Combining the advanced experimental techniques neutron reflectivity and quartz crystal microbalance with dissipation monitoring, a mechanistic drug delivery model for LL-37-loaded cubosomes on bacterial mimicking bilayers was constructed. Moreover, the cubosome interaction with Escherichia coli was directly visualized using super-resolution laser scanning microscopy and cryogenic electron tomography. We could conclude that cubosomes loaded with LL-37 adsorbed and distorted bacterial membranes, providing evidence that the peptide-loaded cubosomes function as an antimicrobial unit.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Membranas/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Tomografia com Microscopia Eletrônica , Humanos , Bicamadas Lipídicas/química , Lipossomos/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Técnicas de Microbalança de Cristal de Quartzo , Catelicidinas
8.
Colloids Surf B Biointerfaces ; 168: 68-75, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373240

RESUMO

Experimental studies have been made to test the idea that seed proteins from Moringa oleifera which are novel, natural flocculating agents for many particles could be used to promote adhesion at planar interfaces and hence provide routes to useful nanostructures. The proteins bind irreversibly to silica interfaces. Surfaces that had been exposed to protein solutions and rinsed were then exposed to dispersions of sulfonated polystyrene latex. Atomic force microscopy was used to count particle density and identified that the sticking probability was close to 1. Measurements with a quartz crystal microbalance confirmed the adhesion and indicated that repeated exposures to solutions of Moringa seed protein and particles increased the coverage. Neutron reflectivity and scattering experiments indicate that particles bind as a monolayer. The various results show that the 2S albumin seed protein can be used to fix particles at interfaces and suggest routes for future developments in making active filters or improved interfaces for photonic devices.


Assuntos
Adesivos/química , Moringa oleifera/metabolismo , Proteínas de Plantas/química , Sementes/metabolismo , Floculação , Microscopia de Força Atômica , Nanopartículas/química , Tamanho da Partícula , Poliestirenos/química , Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício/química , Propriedades de Superfície
9.
J Colloid Interface Sci ; 511: 474-481, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29073553

RESUMO

The interactions between perfluoroalkyl substances (PFASs) and a phospholipid bilayer (1,2-dimyristoyl-sn-glycero-3-phosphocholine) were investigated at the molecular level using neutron reflectometry. Representative PFASs with different chain length and functional groups were selected in this study including: perfluorobutane sulfonate (PFBS), perfluorohexanoate (PFHxA), perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA). All PFASs were found to interact with the bilayer by incorporation, indicating PFAS ability to accumulate once ingested or taken up by organisms. The interactions were observed to increase with chain length and vary with the functional group as SO2NH2(FOSA)>SO2O-(PFOS)>COO-(PFNA). The PFAS hydrophobicity, which is strongly correlated with perfluorocarbon chain length, was found to strongly influence the interactions. Longer chain PFASs showed higher tendency to penetrate into the bilayer compared to the short-chain compounds. The incorporated PFASs could for all substances but one (PFNA) be removed from the lipid membrane by gentle rinsing with water (2mLmin-1). Although short-chain PFASs have been suggested to be the potentially less bioaccumulative alternative, we found that in high enough concentrations they can also disturb the bilayer. The roughness and disorder of the bilayer was observed to increase as the concentration of PFASs increased (in particular for the high concentrations of short-chain substances i.e. PFHxA and PFBS), which can be an indication of aggregation of PFASs in the bilayer.

10.
J Appl Crystallogr ; 50(Pt 4): 1066-1074, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808432

RESUMO

Changes of scattering are observed as the grazing angle of incidence of an incoming beam increases and probes different depths in samples. A model has been developed to describe the observed intensity in grazing-incidence small-angle neutron scattering (GISANS) experiments. This includes the significant effects of instrument resolution, the sample transmission, which depends on both absorption and scattering, and the sample structure. The calculations are tested with self-organized structures of two colloidal samples with different size particles that were measured on two different instruments. The model allows calculations for various instruments with defined resolution and can be used to design future improved experiments. The possibilities and limits of GISANS for different studies are discussed using the model calculations.

11.
J Colloid Interface Sci ; 504: 315-324, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28551526

RESUMO

Polysaccharides are known to modify binding of proteins at interfaces and this paper describes studies of these interactions and how they are modified by pH. Specifically, the adsorption of human serum albumin on to polystyrene latex and to silica is described, focusing on how this is affected by hyaluronan. Experiments were designed to test how such binding might be modified under relevant physiological conditions. Changes in adsorption of albumin alone and the co-adsorption of albumin and hyaluronan are driven by electrostatic interactions. Multilayer binding is found to be regulated by the pH of the solution and the molecular mass and concentration of hyaluronan. Highest adsorption was observed at pH below 4.8 and for low molecular mass hyaluronan (≤150kDa) at concentrations above 2mgml-1. On silica with grafted hyaluronan, albumin absorption is reversed by changes in solvent pH due to their strong electrostatic attraction. Albumin physisorbed on silica surfaces is also rinsed away with dilute hyaluronan solution at pH 4.8. The results demonstrate that the protein adsorption can be controlled both by changes of pH and by interaction with other biological macromolecules.


Assuntos
Ácido Hialurônico/química , Látex/química , Albumina Sérica Humana/química , Dióxido de Silício/química , Sulfonas/química , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Albumina Sérica Humana/isolamento & purificação , Eletricidade Estática , Propriedades de Superfície
12.
J Colloid Interface Sci ; 505: 9-13, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28554043

RESUMO

Studies with a model system consisting of polystyrene latex particles showed that the protein from seeds of Moringa trees adsorbs to the surface and causes flocculation as unusually dense aggregates. In this study, electrolytes sodium chloride (NaCl), ferric chloride (FeCl3) and aluminium sulfate (Al2(SO4)3) have been used to aggregate model polystyrene particles. The study augments previous work using neutron scattering on the flocculation of polystyrene latex with protein from seeds of Moringa trees that had indicated higher floc dimension, df, values as the concentration of particles increased. The measurements were made using ultra small-angle neutron scattering. Generally the fractal dimension, and thus the floc density, increased with particle concentration and salt concentration. Flocculation was apparent at much lower concentrations of FeCl3 and Al2(SO4)3 than of NaCl. The values of df were found not to simply scale with ionic strength for the three electrolytes studied with FeCl3 being the most effective flocculating agent.

13.
Chemosphere ; 159: 385-391, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27323291

RESUMO

The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process.


Assuntos
Ácidos Alcanossulfônicos/química , Caproatos/química , Caprilatos/química , Fluorocarbonos/química , Minerais/química , Dióxido de Silício/química , Adsorção , Poluentes Químicos da Água/análise
14.
Rev Sci Instrum ; 86(1): 016115, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25638142

RESUMO

The design of sample cells to study solid/liquid interfaces by neutron reflection is presented. Use of standardized components and a modular design has allowed a wide range of experiments that include grazing incidence scattering and conventional small-angle scattering. Features that reduce background scattering are emphasized. Various flow arrangements to fill and replenish the liquid in the cell as well as continuous stirring are described.

15.
J Colloid Interface Sci ; 448: 339-46, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746187

RESUMO

The paper describes the adsorption of purified protein from seeds of Moringa oleifera to a sapphire interface and the effects of addition of the anionic surfactant sodium dodecylsulfate (SDS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB). Neutron reflection was used to determine the structure and composition of interfacial layers adsorbed at the solid/solution interface. The maximum surface excess of protein was found to be about 5.3 mg m(-2). The protein does not desorb from the solid/liquid interface when rinsed with water. Addition of SDS increases the reflectivity indicating co-adsorption. It was observed that CTAB is able to remove the protein from the interface. The distinct differences to the behavior observed previously for the protein at the silica/water interface are identified. The adsorption of the protein to alumina in addition to other surfaces has shown why it is an effective flocculating agent for the range of impurities found in water supplies. The ability to tailor different surface layers in combination with various surfactants also offers the potential for adsorbed protein to be used in separation technologies.


Assuntos
Óxido de Alumínio/química , Compostos de Cetrimônio/química , Moringa oleifera/química , Proteínas de Plantas/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Adsorção , Cetrimônio , Proteínas de Plantas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA