Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 115(3): 110600, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889367

RESUMO

The taxonomy of Pseudomonas has been extensively studied, yet the determination of species is currently difficult because of recent taxonomic changes and the lack of complete genomic sequence data. We isolated a bacterium causing a leaf spot disease on hibiscus (Hibiscus rosa-sinensis). Whole genome sequencing revealed similarity to Pseudomonas amygdali pv. tabaci and pv. lachrymans. The genome of this isolate (referred to as P. amygdali 35-1) shared 4987 genes with P. amygdali pv. hibisci, but possessed 204 unique genes and contained gene clusters encoding putative secondary metabolites and copper resistance determinants. We predicted this isolate's type III secretion effector (T3SE) repertoire and identified 64 putative T3SEs, some of which are present in other P. amygdali pv. hibisci strains. Assays showed that the isolate was resistant to copper at a concentration of 1.6 mM. This study provides an improved understanding of the genomic relatedness and diversity of the P. amygdali species.


Assuntos
Hibiscus , Rosa , Cobre , Genômica , Pseudomonas
2.
Plant Dis ; 107(10): 3259-3263, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37833832

RESUMO

In spring 2019, necrotic leaf spots were detected on Greek oregano (Origanum vulgare var. hirtum) plants in a commercial greenhouse operation. An isolate was recovered from the diseased plants. Partial 16S ribosomal RNA sequencing and multilocus sequence analysis revealed that the isolate was a Xanthomonas sp. but proved insufficient to identify the species with certainty. Therefore, whole-genome sequencing using both Nanopore and Illumina technologies was performed. Here, we report the complete and annotated genome sequence of Xanthomonas hortorum strain 108, which was originally isolated from Greek oregano in Long Island, NY, U.S.A.


Assuntos
Origanum , Xanthomonas , Xanthomonas/genética , Tipagem de Sequências Multilocus , Grécia
3.
Mol Plant Microbe Interact ; 35(8): 672-680, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35343250

RESUMO

Efflux transporters such as MexAB-OprM contribute to bacterial resistance to diverse antimicrobial compounds. Here, we show that MexB contributes to epiphytic and late-stage apoplastic growth of Pseudomonas syringae strain B728a, as well as lesion formation in common bean (Phaseolus vulgaris). Although a ∆mexB mutant formed fewer lesions after topical application to common bean, these lesions contain the same number of cells (105 to 107 cells) as those caused by the wild-type strain. The internalized population size of both the wild-type and the ∆mexB mutant within small samples of surface-sterilized asymptomatic portions of leaves varied from undetectably low to as high as 105 cells/cm2. Localized bacterial populations within individual lesions consistently exceeded 105 cells/cm2. Strain B728a was capable of moderate to extensive apoplastic growth in diverse host plants, including lima bean (P. lunatus), fava bean (Vicia faba), pepper (Capsicum annuum), Nicotiana benthamiana, sunflower (Helianthus annuus), and tomato (Solanum lycopersicum), but MexB was not required for growth in a subset of these plant species. A model is proposed that MexB provides resistance to as-yet-unidentified antimicrobials that differ between plant species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Phaseolus , Pseudomonas syringae , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Phaseolus/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas syringae/metabolismo , Virulência
4.
Proc Natl Acad Sci U S A ; 116(38): 18900-18910, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484768

RESUMO

The foliar plant pathogen Pseudomonas syringae can establish large epiphytic populations on leaf surfaces before apoplastic colonization. However, the bacterial genes that contribute to these lifestyles have not been completely defined. The fitness contributions of 4,296 genes in P. syringae pv. syringae B728a were determined by genome-wide fitness profiling with a randomly barcoded transposon mutant library that was grown on the leaf surface and in the apoplast of the susceptible plant Phaseolus vulgaris Genes within the functional categories of amino acid and polysaccharide (including alginate) biosynthesis contributed most to fitness both on the leaf surface (epiphytic) and in the leaf interior (apoplast), while genes involved in type III secretion system and syringomycin synthesis were primarily important in the apoplast. Numerous other genes that had not been previously associated with in planta growth were also required for maximum epiphytic or apoplastic fitness. Fourteen hypothetical proteins and uncategorized glycosyltransferases were also required for maximum competitive fitness in and on leaves. For most genes, no relationship was seen between fitness in planta and either the magnitude of their expression in planta or degree of induction in planta compared to in vitro conditions measured in other studies. A lack of association of gene expression and fitness has important implications for the interpretation of transcriptional information and our broad understanding of plant-microbe interactions.


Assuntos
Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Folhas de Planta/microbiologia , Pseudomonas syringae/fisiologia , Espaço Extracelular/microbiologia , Perfilação da Expressão Gênica , Aptidão Genética , Genoma Bacteriano/genética , Mutação , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Pseudomonas syringae/genética
5.
Phytopathology ; 111(10): 1885-1888, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33724871

RESUMO

Here, we report on the genomic sequence and annotation for Pantoea ananatis OC5a, a strain that was isolated from an onion bulb grown in New York and that is pathogenic to onion, causing center rot of onion. OC5a is the first P. ananatis strain pathogenic to onion from New York to be completely assembled and sequenced. Having been assembled using long PacBio reads and high-fidelity Illumina reads, this genome is closed, complete, and of high quality.


Assuntos
Cebolas , Pantoea , Genômica , Pantoea/genética , Doenças das Plantas
6.
Plant Dis ; 105(4): 1174-1176, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33064625

RESUMO

New Guinea impatiens (NGI, Impatiens hawkeri) are popular bedding plants that can be affected by a number of pathogens. Using 16S rDNA sequencing and genus-specific PCR, we identified the first Dickeya dianthicola strain isolated from NGI presented with blackleg symptoms, herein designated as D. dianthicola 67-19. Here, we report a high-quality complete and annotated genome sequence of D. dianthicola 67-19. The 4,851,809 bp genome was assembled with Nanopore reads and polished with Illumina reads, yielding 422× and 105× coverage, respectively. This closed genome provides a resource for future research on comparative genomics and biology of D. dianthicola, which could translate to improved detection and disease management.


Assuntos
Impatiens , Solanum tuberosum , Dickeya , Nova Guiné , Doenças das Plantas
7.
Plant Dis ; 105(1): 196-198, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32720879

RESUMO

Pectobacterium spp. are a major cause of loss in vegetable and ornamental plant production. One of these species, Pectobacterium carotovorum, can cause soft rot disease on many plants, particularly potato. These diseases lead to significant economic loss and pose food security threats by reducing crop yields in the field, in transit, and during storage. The Gram-negative enterobacterium P. carotovorum WPP14 is a particularly virulent strain for which there is no available closed genome, limiting the molecular research for this important pathogen. Here, we report a high-quality complete and annotated genome sequence of P. carotovorum WPP14. The 4,892,225-bp genome was assembled with Nanopore reads and polished with Illumina reads, yielding 394× and 164× coverage, respectively. This closed genome provides a resource for research on improved detection and biology of P. carotovorum, which could translate into improved disease management.


Assuntos
Pectobacterium , Solanum tuberosum , Bactérias , Pectobacterium/genética , Pectobacterium carotovorum/genética , Doenças das Plantas
8.
Mol Microbiol ; 94(4): 756-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25213752

RESUMO

Intracellular zinc levels are tightly regulated since zinc is an essential cofactor for numerous enzymes, yet can be toxic when present in excess. The majority of intracellular zinc is tightly associated with proteins and is incorporated during synthesis from a poorly defined pool of kinetically labile zinc. In Bacillus subtilis, this labile pool is sensed by equilibration with the metalloregulator Zur, as an indication of zinc sufficiency, and by CzrA, as an indication of zinc excess. Here, we demonstrate that the low-molecular-weight thiol bacillithiol (BSH) serves as a major buffer of the labile zinc pool. Upon shift to conditions of zinc excess, cells transiently accumulate zinc in a low-molecular-weight pool, and this accumulation is largely dependent on BSH. Cells lacking BSH are more sensitive to zinc stress, and they induce zinc efflux at lower external zinc concentrations. Thiol reactive agents such as diamide and cadmium induce zinc efflux by interfering with the Zn-buffering function of BSH. Our data provide new insights into intracellular zinc buffering and may have broad relevance given the presence of BSH in pathogens and the proposed role of zinc sequestration in innate immunity.


Assuntos
Bacillus subtilis/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Zinco/metabolismo , Soluções Tampão , Cisteína/metabolismo , Glucosamina/metabolismo , Homeostase
9.
Front Microbiol ; 13: 778927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145503

RESUMO

Dickeya species are causal agents of soft rot diseases in many economically important crops, including soft rot disease of potato (Solanum tuberosum). Using random barcode transposon-site sequencing (RB-TnSeq), we generated genome-wide mutant fitness profiles of Dickeya dadantii 3937, Dickeya dianthicola ME23, and Dickeya dianthicola 67-19 isolates collected after passage through several in vitro and in vivo conditions. Though all three strains are pathogenic on potato, D. dadantii 3937 is a well-characterized model while D. dianthicola strains ME23 and 67-19 are recent isolates. Strain ME23 specifically was identified as a representative strain from a 2014 outbreak on potato. This study generated comparable gene fitness measurements across ecologically relevant conditions for both model and non-model strains. Tubers from the potato cultivars "Atlantic," "Dark Red Norland," and "Upstate Abundance" provided highly similar conditions for bacterial growth. Using the homolog detection software PyParanoid, we matched fitness values for orthologous genes in the three bacterial strains. Direct comparison of fitness among the strains highlighted shared and variable traits important for growth. Bacterial growth in minimal medium required many metabolic traits that were also essential for competitive growth in planta, such as amino acid, carbohydrate, and nucleotide biosynthesis. Growth in tubers specifically required the pectin degradation gene kduD. Disruption in three putative DNA-binding proteins had strain-specific effects on competitive fitness in tubers. Though the Soft Rot Pectobacteriaceae can cause disease with little host specificity, it remains to be seen the extent to which strain-level variation impacts virulence.

10.
mSystems ; 6(6): e0122921, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726495

RESUMO

Plant-pathogenic Ralstonia spp. colonize plant xylem and cause wilt diseases on a broad range of host plants. To identify genes that promote growth of diverse Ralstonia strains in xylem sap from tomato plants, we performed genome-scale genetic screens (random barcoded transposon mutant sequencing screens [RB-TnSeq]) in three strains spanning the genetic, geographical, and physiological range of plant-pathogenic Ralstonia: Ralstonia solanacearum IBSBF1503, Ralstonia pseudosolanacearum GMI1000, and Ralstonia syzygii PSI07. Contrasting mutant fitness phenotypes in culture media versus in xylem sap suggest that Ralstonia strains are adapted to ex vivo xylem sap and that culture media impose foreign selective pressures. Although wild-type Ralstonia grew in sap and in rich medium with similar doubling times and to a similar carrying capacity, more genes were essential for growth in sap than in rich medium. Each strain required many genes associated with envelope remodeling and repair processes for full fitness in xylem sap. These genes were associated with peptidoglycan peptide formation (murI), secretion of periplasmic proteins (tatC), periplasmic protein folding (dsbA), synthesis of osmoregulated periplasmic glucans (mdoGH), and lipopolysaccharide (LPS) biosynthesis. Mutant strains with mutations in four genes had strong, sap-specific fitness defects in all strain backgrounds: murI, thiC, purU, and a lipoprotein (RSc2007). Many amino acid biosynthesis genes were required for fitness in both minimal medium and xylem sap. Multiple mutants with insertions in virulence regulators had gains of fitness in culture media and neutral fitness in sap. Our genome-scale genetic screen identified Ralstonia fitness factors that promote growth in xylem sap, an ecologically relevant condition. IMPORTANCE Traditional transposon mutagenesis genetic screens pioneered molecular plant pathology and identified core virulence traits like the type III secretion system. TnSeq approaches that leverage next-generation sequencing to rapidly quantify transposon mutant phenotypes are ushering in a new wave of biological discovery. Here, we have adapted a genome-scale approach, random barcoded transposon mutant sequencing (RB-TnSeq), to discover fitness factors that promote growth of three related bacterial strains in a common niche, tomato xylem sap. Fitness of the wild type and mutants show that Ralstonia spp. are adapted to grow well in xylem sap from their natural host plant, tomato. Our screen identified multiple sap-specific fitness factors with roles in maintaining the bacterial envelope. These factors include putative adaptations to resist plant defenses that may include antimicrobial proteins and specialized metabolites that damage bacterial membranes.

11.
PLoS One ; 15(9): e0239998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986776

RESUMO

A variety of traits are necessary for bacterial colonization of the interior of plant hosts, including well-studied virulence effectors as well as other phenotypes contributing to bacterial growth and survival within the apoplast. High-throughput methods such as transposon sequencing (TnSeq) are powerful tools to identify such genes in bacterial pathogens. However, there is little information as to the distinctiveness of traits required for bacterial colonization of different hosts. Here, we utilize randomly barcoded TnSeq (RB-TnSeq) to identify the genes that contribute to the ability of Pseudomonas syringae strain B728a to grow within common bean (Phaseolus vulgaris), lima bean (Phaseolus lunatus), and pepper (Capsicum annuum); species representing two different plant families. The magnitude of contribution of most genes to apoplastic fitness in each of the plant hosts was similar. However, 50 genes significantly differed in their fitness contributions to growth within these species. These genes encoded proteins in various functional categories including polysaccharide synthesis and transport, amino acid metabolism and transport, cofactor metabolism, and phytotoxin synthesis and transport. Six genes that encoded unannotated, hypothetical proteins also contributed differentially to growth in these hosts. The genetic repertoire of a relatively promiscuous pathogen such as P. syringae may thus be shaped, at least in part, by the conditional contribution of some fitness determinants.


Assuntos
Genes Bacterianos , Doenças das Plantas/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/genética , Proteínas de Bactérias/genética , Sequência de Bases , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , Elementos de DNA Transponíveis/genética , Regulação Bacteriana da Expressão Gênica , Phaseolus/crescimento & desenvolvimento , Phaseolus/microbiologia , Filogenia , Pseudomonas syringae/patogenicidade , Virulência/genética
12.
Microbiol Resour Announc ; 9(26)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32586859

RESUMO

We report the complete and annotated genome sequence of a Gram-positive bacterium, Leifsonia sp. strain PS1209, a potato endophyte that was isolated from apparently healthy tubers of potato cultivar NY166. The circular genome is 4,091,164 bp long, with a GC content of 69.08%, containing 3,926 genes.

13.
mBio ; 10(5)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31662463

RESUMO

Bacteria express numerous efflux transporters that confer resistance to diverse toxicants present in their environment. Due to a high level of functional redundancy of these transporters, it is difficult to identify those that are of most importance in conferring resistance to specific compounds. The resistance-nodulation-division (RND) protein family is one such example of redundant transporters that are widespread among Gram-negative bacteria. Within this family, the MexAB-OprM protein complex is highly expressed and conserved among Pseudomonas species. We exposed barcoded transposon mutant libraries in isogenic wild-type and ΔmexB backgrounds in P. syringae B728a to diverse toxic compounds in vitro to identify mutants with increased susceptibility to these compounds. Mutants with mutations in genes encoding both known and novel redundant transporters but with partially overlapping substrate specificities were observed in a ΔmexB background. Psyr_0228, an uncharacterized member of the major facilitator superfamily of transporters, preferentially contributes to tolerance of acridine orange and acriflavine. Another transporter located in the inner membrane, Psyr_0541, contributes to tolerance of acriflavine and berberine. The presence of multiple redundant, genomically encoded efflux transporters appears to enable bacterial strains to tolerate a diversity of environmental toxins. This genome-wide screen performed in a hypersusceptible mutant strain revealed numerous transporters that would otherwise be dispensable under these conditions. Bacterial strains such as P. syringae that likely encounter diverse toxins in their environment, such as in association with many different plant species, probably benefit from possessing multiple redundant transporters that enable versatility with respect to toleration of novel toxicants.IMPORTANCE Bacteria use protein pumps to remove toxic compounds from the cell interior, enabling survival in diverse environments. These protein pumps can be highly redundant, making their targeted examination difficult. In this study, we exposed mutant populations of Pseudomonas syringae to diverse toxicants to identify pumps that contributed to survival in those conditions. In parallel, we examined pump redundancy by testing mutants of a population lacking the primary efflux transporter responsible for toxin tolerance. We identified partial substrate overlap for redundant transporters, as well as several pumps that appeared more substrate specific. For bacteria that are found in diverse environments, having multiple, partially redundant efflux pumps likely allows flexibility in habitat colonization.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico/genética , Elementos de DNA Transponíveis/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas syringae/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Endófitos , Deleção de Genes , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Pseudomonas aeruginosa/genética , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/metabolismo , Especificidade por Substrato , Transcriptoma
14.
Cell Host Microbe ; 17(6): 752-62, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26067603

RESUMO

The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered plant innate immune system by injecting a complex repertoire of type III secretion effector (T3E) proteins. Beyond redundancy and interplay, individual T3Es may interact with multiple immunity-associated proteins, rendering their analysis challenging. We constructed a Pst DC3000 polymutant lacking all 36 T3Es and restored individual T3Es or their mutants to explore the interplay among T3Es. The weakly expressed T3E HopAD1 was sufficient to elicit immunity-associated cell death in Nicotiana benthamiana. HopAD1-induced cell death was suppressed partially by native AvrPtoB and completely by AvrPtoBM3, which has mutations disrupting its E3 ubiquitin ligase domain and two known domains for interacting with immunity-associated kinases. AvrPtoBM3 also gained the ability to interact with the immunity-kinase MKK2, which is required for HopAD1-dependent cell death. Thus, AvrPtoB has alternative, competing mechanisms for suppressing effector-triggered plant immunity. This approach allows the deconvolution of individual T3E activities.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Pseudomonas syringae/genética , Proteínas de Bactérias/genética , Morte Celular , Regulação Bacteriana da Expressão Gênica , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Mutação , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/citologia , Nicotiana/microbiologia , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA