Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 2015-2023, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196113

RESUMO

Understanding the size-dependent behavior of nanoparticles is crucial for optimizing catalytic performance. We investigate the differences in selectivity of size-selected gold nanoparticles for CO2 electroreduction with sizes ranging from 1.5 to 6.5 nm. Our findings reveal an optimal size of approximately 3 nm that maximizes selectivity toward CO, exhibiting up to 60% Faradaic efficiency at low potentials. High-resolution transmission electron microscopy reveals different shapes for the particles and suggests that multiply twinned nanoparticles are favorable for CO2 reduction to CO. Our analysis shows that twin boundaries pin 8-fold coordinated surface sites and in turn suggests that a variation of size and shape to optimize the abundance of 8-fold coordinated sites is a viable path for optimizing the CO2 electrocatalytic reduction to CO. This work contributes to the advancement of nanocatalyst design for achieving tunable selectivity for CO2 conversion into valuable products.

2.
Phys Chem Chem Phys ; 26(12): 9253-9263, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445363

RESUMO

Stability under reactive conditions poses a common challenge for cluster- and nanoparticle-based catalysts. Since the catalytic properties of <5 nm gold nanoparticles were first uncovered, optimizing their stability at elevated temperatures for CO oxidation has been a central theme. Here we report direct observations of improved stability of AuTiOx alloy nanoparticles for CO oxidation compared with pure Au nanoparticles on TiO2. The nanoparticles were synthesized using a magnetron sputtering, gas-phase aggregation cluster source, size-selected using a lateral time-of-flight mass filter and deposited onto TiO2-coated micro-reactors for thermocatalytic activity measurements of CO oxidation. The AuTiOx nanoparticles exhibited improved stability at elevated temperatures, which is attributed to a self-anchoring interaction with the TiO2 substrate. The structure of the AuTiOx nanoparticles was also investigated in detail using ion scattering spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The measurements showed that the alloyed nanoparticles exhibited a core-shell structure with an Au core surrounded by an AuTiOx shell. The structure of these alloy nanoparticles appeared stable even at temperatures up to 320 °C under reactive conditions, for more than 140 hours. The work presented confirms the possibility of tuning catalytic activity and stability via nanoparticle alloying and self-anchoring on TiO2 substrates, and highlights the importance of complementary characterization techniques to investigate and optimize nanoparticle catalyst designs of this nature.

3.
Nano Lett ; 18(6): 3454-3460, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29664650

RESUMO

Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo75Ni25 metal target in a reactive atmosphere of Ar and H2S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered by a quadrupole mass filter and subsequently deposited on a planar substrate, such as a grid for electron microscopy or a microreactor. By varying the mass of the deposited nanoparticles, it is demonstrated that the Ni-Mo-S nanoparticles can be tuned into fullerene-like particles, flat-lying platelets, and upright-oriented platelets. The nanoparticle morphologies provide different abundances of Ni-Mo-S edge sites, which are commonly considered the catalytically important sites. Using a microreactor system, we assess the catalytic activity of the Ni-Mo-S nanoparticles for the HDS of dibenzothiophene. The measurements show that platelets are twice as active as the fullerene-like particles, demonstrating that the Ni-Mo-S edges are more active than basal planes for the HDS. Furthermore, the upright-standing orientation of platelets show an activity that is six times higher than the fullerene-like particles, demonstrating the importance of the edge site number and accessibility to reducing, e.g., sterical hindrance for the reacting molecules.

5.
J Am Chem Soc ; 138(10): 3433-42, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26891132

RESUMO

The understanding of processes leading to the formation of nanometer-sized particles is important for tailoring of their size, shape and location. The growth mechanisms and kinetics of nanoparticles from solid precursors are, however, often poorly described. Here we employ transmission electron microscopy (TEM) to examine the formation of copper nanoparticles on a silica support during the reduction by H2 of homogeneous copper phyllosilicate platelets, as a prototype precursor for a coprecipitated catalyst. Specifically, time-lapsed TEM image series acquired of the material during the reduction process provide a direct visualization of the growth dynamics of an ensemble of individual nanoparticles and enable a quantitative evaluation of the nucleation and growth of the nanoparticles. This quantitative information is compared with kinetic models and found to be best described by a nucleation-and-growth scenario involving autocatalytic reduction of the copper phyllosilicate followed by diffusion-limited or reaction-limited growth of the copper nanoparticles. The plate-like structure of the precursor restricted the diffusion of copper and the autocatalytic reduction limited the probability for secondary nucleation. The combination of a uniform size of precursor particles and the autocatalytic reduction thus offers means to synthesize nanoparticles with well-defined sizes in large amounts. In this way, in situ observations made by electron microscopy provide mechanistic and kinetic insights into the formation of supported nanoparticles, essential for the rational design of nanomaterials.

6.
Phys Rev Lett ; 113(10): 106103, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238371

RESUMO

We study a crystalline epitaxial alumina thin film with the characteristics of a spinel-type transition Al2O3(100) surface by using atom-resolved noncontact atomic force microscopy and density functional theory. It is shown that the films are terminated by an Al-O layer rich in Al vacancies, exhibiting a strong preference for surface hydroxyl group formation in two configurations. The transition alumina films are crystalline and perfectly stable in ambient atmospheres, a quality which is expected to open the door to new fundamental studies of the surfaces of transition aluminas.

7.
Phys Chem Chem Phys ; 16(39): 21289-99, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25175427

RESUMO

By means of scanning tunnelling microscopy (STM) the nucleation, growth and sintering of platinum nanoparticles (Pt NP's) was studied on vicinal and flat rutile titanium dioxide (TiO2) surfaces. Utilising physical vapour deposition, the nucleation of Pt NP's on TiO2 surfaces at room temperature (RT) was found to be random and invariant towards different surface morphologies and reduction states. Thus, the nucleation of Pt on TiO2 at RT is rather insensitive to the surface structure and surface defects. Vacuum-annealing at 600 K, 700 K and 800 K, respectively, led to lower densities of Pt NP's as a result of sintering. Sintering occurred at different rates at the TiO2 surfaces studied, indicating that the surface morphology and the amount of Ti(3+) excess charge do have an influence on the particle stability. Observed changes in the NP distribution as a result of sintering can be explained inferring facile diffusion of Pt NP's along the [001] direction.

8.
Angew Chem Int Ed Engl ; 53(40): 10723-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25078562

RESUMO

The functional properties of transition metal dichalcogenides (TMDs) may be promoted by the inclusion of other elements. Here, we studied the local stoichiometry of single cobalt promoter atoms in an industrial-style MoS2-based hydrotreating catalyst. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy show that the Co atoms occupy sites at the (-100) S edge terminations of the graphite-supported MoS2 nanocrystals in the catalyst. Specifically, each Co atom has four neighboring S atoms that are arranged in a reconstructed geometry, which reflects an equilibrium state. The structure agrees with complementary studies of catalysts that were prepared under vastly different conditions and on other supports. In contrast, a small amount of residual Fe in the graphite is found to compete for the S edge sites, so that promotion by Co is strongly sensitive to the purity of the raw materials. The present single-atom-sensitive analytical method therefore offers a guide for advancing preparative methods for promoted TMD nanomaterials.

10.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985865

RESUMO

The relation between the energy-dependent particle and wave descriptions of electron-matter interactions on the nanoscale was analyzed by measuring the delocalization of an evanescent field from energy-filtered amplitude images of sample/vacuum interfaces with a special aberration-corrected electron microscope. The spatial field extension coincided with the energy-dependent self-coherence length of propagating wave packets that obeyed the time-dependent Schrödinger equation, and underwent a Goos-Hänchen shift. The findings support the view that wave packets are created by self-interferences during coherent-inelastic Coulomb interactions with a decoherence phase close to Δφ = 0.5 rad. Due to a strictly reciprocal dependence on energy, the wave packets shrink below atomic dimensions for electron energy losses beyond 1000 eV, and thus appear particle-like. Consequently, our observations inevitably include pulse-like wave propagations that stimulate structural dynamics in nanomaterials at any electron energy loss, which can be exploited to unravel time-dependent structure-function relationships on the nanoscale.

11.
Ultramicroscopy ; 243: 113641, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401890

RESUMO

Reconstruction of the exit wave function is an important route to interpreting high-resolution transmission electron microscopy (HRTEM) images. Here we demonstrate that convolutional neural networks can be used to reconstruct the exit wave from a short focal series of HRTEM images, with a fidelity comparable to conventional exit wave reconstruction. We use a fully convolutional neural network based on the U-Net architecture, and demonstrate that we can train it on simulated exit waves and simulated HRTEM images of graphene-supported molybdenum disulphide (an industrial desulfurization catalyst). We then apply the trained network to analyse experimentally obtained images from similar samples, and obtain exit waves that clearly show the atomically resolved structure of both the MoS2 nanoparticles and the graphene support. We also show that it is possible to successfully train the neural networks to reconstruct exit waves for 3400 different two-dimensional materials taken from the Computational 2D Materials Database of known and proposed two-dimensional materials.

12.
Nanoscale ; 15(21): 9503-9509, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37170698

RESUMO

Vanadium oxides exist in a multitude of phases with varying structure and stoichiometry. This abundance of phases can be extended through the use of other oxides as supports, and through redox treatments. However, the combined effects of different supports and redox treatments can be difficult to identify, particularly when present as different terminating facets on nanoparticles. Here, we examine structural dynamics of 2D vanadium oxides supported on anatase TiO2 nanoparticles, correlated with changes in oxidation state, using in situ transmission electron microscopy imaging and electron energy loss spectroscopy. As the average oxidation state is reduced below V(IV), an ordered cubic V(II) phase is observed exclusively at the high-index {10l} facets of the support. This local accommodation of highly reduced states is necessary for explaining the observed range of average oxidation states. In turn, the findings show that oxidation states extending from V(V)-V(IV) to V(II) can be simultaneously stabilized by different supporting oxide surfaces during exposure to atmospheres with controlled redox potential.

13.
Nanoscale ; 15(42): 16896-16903, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850513

RESUMO

Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO2 cavities versus time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology.

14.
Phys Chem Chem Phys ; 14(6): 2092-8, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22231389

RESUMO

The morphology and thermal stability of Ni and Co nanoclusters grown by physical vapour deposition on a reconstructed (1120) surface of α-Al(2)O(3) is investigated using non-contact atomic force microscopy (NC-AFM). NC-AFM images reveal that the clean α-Al(2)O(3)(1120) substrate adopts a characteristic (12 × 4) reconstruction when prepared in vacuum at high temperature. Subsequent deposition of Ni and Co onto this substrate at room temperature facilitates the growth of well-ordered metal nanocluster arrays with a preferred inter-cluster distance determined by the (12 × 4) periodicity of the substrate surface. The order in the cluster arrangement remains intact even upon annealing the system to temperatures up to 500 °C indicating a high resistance against sintering. The reconstructed α-Al(2)O(3)(1120) surface can, therefore, serve as an appropriate insulating template for studies of size-dependent magnetic or catalytic effects in a well-defined ensemble of metallic nanoclusters.

15.
J Am Chem Soc ; 133(51): 20672-5, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22087502

RESUMO

Sintering of nanoparticles (NPs) of Ni supported on MgAl(2)O(4) was monitored in situ using transmission electron microscopy (TEM) during exposure to an equimolar mixture of H(2) and H(2)O at a pressure of 3.6 mbar at 750 °C, conditions relevant to methane steam reforming. The TEM images revealed an increase in the mean particle size due to disappearance of smaller, immobile NPs and the resultant growth of the larger NPs. A new approach for predicting the long-term sintering of NPs is presented wherein microscopic observations of the ripening of individual NPs (over a span of a few seconds) are used to extract energetic parameters that allow a description of the collective behavior of the entire population of NPs (over several tens of minutes).

16.
Phys Rev Lett ; 107(3): 036102, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838378

RESUMO

From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.

17.
Nat Commun ; 12(1): 5007, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408156

RESUMO

Advances in electron microscopy have enabled visualizations of the three-dimensional (3D) atom arrangements in nano-scale objects. The observations are, however, prone to electron-beam-induced object alterations, so tracking of single atoms in space and time becomes key to unravel inherent structures and properties. Here, we introduce an analytical approach to quantitatively account for atom dynamics in 3D atomic-resolution imaging. The approach is showcased for a Co-Mo-S nanocrystal by analysis of time-resolved in-line holograms achieving ~1.5 Å resolution in 3D. The analysis reveals a decay of phase image contrast towards the nanocrystal edges and meta-stable edge motifs with crystallographic dependence. These findings are explained by beam-stimulated vibrations that exceed Debye-Waller factors and cause chemical transformations at catalytically relevant edges. This ability to simultaneously probe atom vibrations and displacements enables a recovery of the pristine Co-Mo-S structure and establishes, in turn, a foundation to understand heterogeneous chemical functionality of nanostructures, surfaces and molecules.

18.
Nanoscale ; 13(15): 7266-7272, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889890

RESUMO

Redox processes of oxide materials are fundamental in catalysis. These processes depend on the surface structure and stoichiometry of the oxide and are therefore expected to vary between surface facets. However, there is a lack of direct measurements of redox properties on the nanoscale for analysing the importance of such faceting effects in technical materials. Here, we address the facet-dependent redox properties of vanadium-oxide-covered anatase nanoparticles of relevance to, e.g., selective catalytic reduction of nitrogen oxides. The vanadium oxidation states at individual nanoscale facets are resolved in situ under catalytically relevant conditions by combining transmission electron microscopy imaging and electron energy loss spectroscopy. The measurements reveal that vanadium on {001} facets consistently retain higher oxidation states than on {10l} facets. Insight into such structure-sensitivity of surface redox processes opens prospects of tailoring oxide nanoparticles with enhanced catalytic functionalities.

19.
J Am Chem Soc ; 132(23): 7968-75, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20481529

RESUMO

This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al(2)O(3) support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10 mbar air at 650 degrees C. Time-resolved image series unequivocally reveal that the sintering of Pt nanoparticles was mediated by an Ostwald ripening process. A statistical analysis of an ensemble of Pt nanoparticles shows that the particle size distributions change shape from an initial Gaussian distribution via a log-normal distribution to a Lifshitz-Slyozov-Wagner (LSW) distribution. Furthermore, the time-dependency of the ensemble-averaged particle size and particle density is determined. A mean field kinetic description captures the main trends in the observed behavior. However, at the individual nanoparticle level, deviations from the model are observed suggesting in part that the local environment influences the atom exchange process.

20.
Nature ; 427(6973): 426-9, 2004 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-14749826

RESUMO

The synthesis of carbon nanotubes with predefined structure and functionality plays a central role in the field of nanotechnology, whereas the inhibition of carbon growth is needed to prevent a breakdown of industrial catalysts for hydrogen and synthesis gas production. The growth of carbon nanotubes and nanofibres has therefore been widely studied. Recent advances in in situ techniques now open up the possibility of studying gas-solid interactions at the atomic level. Here we present time-resolved, high-resolution in situ transmission electron microscope observations of the formation of carbon nanofibres from methane decomposition over supported nickel nanocrystals. Carbon nanofibres are observed to develop through a reaction-induced reshaping of the nickel nanocrystals. Specifically, the nucleation and growth of graphene layers are found to be assisted by a dynamic formation and restructuring of mono-atomic step edges at the nickel surface. Density-functional theory calculations indicate that the observations are consistent with a growth mechanism involving surface diffusion of carbon and nickel atoms. The finding that metallic step edges act as spatiotemporal dynamic growth sites may be important for understanding other types of catalytic reactions and nanomaterial syntheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA