Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 478(14): 2927-2944, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34240737

RESUMO

The release of glucose from lignocellulosic waste for subsequent fermentation into biofuels holds promise for securing humankind's future energy needs. The discovery of a set of copper-dependent enzymes known as lytic polysaccharide monooxygenases (LPMOs) has galvanised new research in this area. LPMOs act by oxidatively introducing chain breaks into cellulose and other polysaccharides, boosting the ability of cellulases to act on the substrate. Although several proteins have been implicated as electron sources in fungal LPMO biochemistry, no equivalent bacterial LPMO electron donors have been previously identified, although the proteins Cbp2D and E from Cellvibrio japonicus have been implicated as potential candidates. Here we analyse a small c-type cytochrome (CjX183) present in Cellvibrio japonicus Cbp2D, and show that it can initiate bacterial CuII/I LPMO reduction and also activate LPMO-catalyzed cellulose-degradation. In the absence of cellulose, CjX183-driven reduction of the LPMO results in less H2O2 production from O2, and correspondingly less oxidative damage to the enzyme than when ascorbate is used as the reducing agent. Significantly, using CjX183 as the activator maintained similar cellulase boosting levels relative to the use of an equivalent amount of ascorbate. Our results therefore add further evidence to the impact that the choice of electron source can have on LPMO action. Furthermore, the study of Cbp2D and other similar proteins may yet reveal new insight into the redox processes governing polysaccharide degradation in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cellvibrio/enzimologia , Grupo dos Citocromos c/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Celulose/metabolismo , Cellvibrio/genética , Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Peróxido de Hidrogênio/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Oligossacarídeos/metabolismo , Oxirredução , Oxigênio/metabolismo , Domínios Proteicos , Espectrofotometria/métodos , Especificidade por Substrato
2.
J Biol Chem ; 294(45): 17117-17130, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31471321

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class Agaricomycetes, associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, LsAA9B, a naturally occurring protein from Lentinus similis The LsAA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of LsAA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.


Assuntos
Histidina , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Ligantes , Oxigenases de Função Mista/genética , Modelos Moleculares , Fosforilação , Filogenia
3.
Nature ; 506(7489): 498-502, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24463512

RESUMO

A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.


Assuntos
Bacteroides/genética , Bacteroides/metabolismo , Trato Gastrointestinal/microbiologia , Loci Gênicos/genética , Glucanos/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Bacteroides/enzimologia , Bacteroides/crescimento & desenvolvimento , Metabolismo dos Carboidratos/genética , Sequência de Carboidratos , Parede Celular/química , Cristalografia por Raios X , Dieta , Fibras na Dieta , Evolução Molecular , Glucanos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Metagenoma , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Simbiose , Xilanos/química
4.
Nat Chem Biol ; 13(6): 610-612, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346405

RESUMO

O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value.


Assuntos
Modelos Moleculares , beta-N-Acetil-Hexosaminidases/química , Acetilglucosamina/metabolismo , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Ligantes , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
5.
Nat Chem Biol ; 12(4): 298-303, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928935

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.


Assuntos
Celulose/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Sequência de Aminoácidos , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Sítios de Ligação , Domínio Catalítico , Cobre/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Lentinula/enzimologia , Lentinula/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Oligossacarídeos/química , Oxirredução , Especificidade por Substrato
6.
J Biol Chem ; 291(24): 12838-12850, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27129229

RESUMO

Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E-Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Histidina/química , Oxigenases de Função Mista/química , Compostos Organometálicos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cobre/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Histidina/metabolismo , Cinética , Espectrometria de Massas , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Mutação , Compostos Organometálicos/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Streptomyces lividans/enzimologia , Streptomyces lividans/genética , Especificidade por Substrato , Termodinâmica
7.
Proc Natl Acad Sci U S A ; 111(24): 8797-802, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889637

RESUMO

Strategies for O2 activation by copper enzymes were recently expanded to include mononuclear Cu sites, with the discovery of the copper-dependent polysaccharide monooxygenases, also classified as auxiliary-activity enzymes 9-11 (AA9-11). These enzymes are finding considerable use in industrial biofuel production. Crystal structures of polysaccharide monooxygenases have emerged, but experimental studies are yet to determine the solution structure of the Cu site and how this relates to reactivity. From X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies, we observed a change from four-coordinate Cu(II) to three-coordinate Cu(I) of the active site in solution, where three protein-derived nitrogen ligands coordinate the Cu in both redox states, and a labile hydroxide ligand is lost upon reduction. The spectroscopic data allowed for density functional theory calculations of an enzyme active site model, where the optimized Cu(I) and (II) structures were consistent with the experimental data. The O2 reactivity of the Cu(I) site was probed by EPR and stopped-flow absorption spectroscopies, and a rapid one-electron reduction of O2 and regeneration of the resting Cu(II) enzyme were observed. This reactivity was evaluated computationally, and by calibration to Cu-superoxide model complexes, formation of an end-on Cu-AA9-superoxide species was found to be thermodynamically favored. We discuss how this thermodynamically difficult one-electron reduction of O2 is enabled by the unique protein structure where two nitrogen ligands from His1 dictate formation of a T-shaped Cu(I) site, which provides an open coordination position for strong O2 binding with very little reorganization energy.


Assuntos
Cobre/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Oxigênio/química , Polissacarídeos/química , Thermoascus/enzimologia , Catálise , Domínio Catalítico , Quitina/química , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Modelos Moleculares , Espectrofotometria , Superóxidos/química , Termodinâmica , Raios X
8.
Biochem Soc Trans ; 44(1): 94-108, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862194

RESUMO

Complex carbohydrates are ubiquitous in all kingdoms of life. As major components of the plant cell wall they constitute both a rich renewable carbon source for biotechnological transformation into fuels, chemicals and materials, and also form an important energy source as part of a healthy human diet. In both contexts, there has been significant, sustained interest in understanding how microbes transform these substrates. Classical perspectives of microbial polysaccharide degradation are currently being augmented by recent advances in the discovery of lytic polysaccharide monooxygenases (LPMOs) and polysaccharide utilization loci (PULs). Fundamental discoveries in carbohydrate enzymology are both advancing biological understanding, as well as informing applications in industrial biomass conversion and modulation of the human gut microbiota to mediate health benefits.


Assuntos
Bactérias/metabolismo , Polissacarídeos/metabolismo , Animais , Celulose/metabolismo , Saúde , Humanos , Indústrias , Oxigenases de Função Mista/metabolismo , Polissacarídeos/química
9.
Nat Chem Biol ; 10(2): 122-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362702

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs.


Assuntos
Aspergillus oryzae/enzimologia , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Sequência de Bases , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Polissacarídeos/química , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
Nucleic Acids Res ; 41(17): 8357-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821668

RESUMO

Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the enzyme-DNA cocrystal, the single catalytic site binds two magnesium ions. The structures also reveal a binding site in the C-terminal domain where a potassium ion is directly coordinated by five main chain carbonyl groups, and we show this site is essential for DNA binding. This site resembles structurally and functionally the potassium sites in the human FEN1 and exonuclease 1 enzymes. Fluorescence anisotropy measurements and the crystal structures of the ExoIX:DNA complexes show that this potassium ion interacts directly with a phosphate diester in the substrate DNA.


Assuntos
Exodesoxirribonucleases/química , Diester Fosfórico Hidrolases/química , Biocatálise , Cálcio/química , DNA/química , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Endonucleases Flap/química , Humanos , Magnésio/química , Modelos Moleculares , Diester Fosfórico Hidrolases/metabolismo , Potássio/química
11.
Biochem J ; 456(1): 81-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24001052

RESUMO

The Tritryps Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani are responsible for great morbidity and mortality in developing countries. Their dimeric dUTPases are members of the all-α NTP pyrophosphohydrolase family and represent promising drug targets due to their essential nature and markedly different structural and biochemical properties compared with the trimeric human enzyme. In the present paper we describe the structure of the T. brucei enzyme in open and closed conformations. Furthermore, we probe the reaction mechanism through the binding of transition state mimics both in solution and in the crystal. 31P-NMR and tryptophan fluorescence quenching in the presence of AlF3 and MgF3- identified which phosphate is subject to nucleophilic attack by a water molecule. The structures in complex with two transition state analogues confirm that the nucleophilic attack occurs on the ß-phosphate in contrast with the α-phosphate in the trimeric enzymes. These results establish the structural basis of catalysis of these important housekeeping enzymes and has ramifications for the wider all-α NTP pyrophosphohydrolase family.


Assuntos
Pirofosfatases/química , Trypanosoma brucei brucei/enzimologia , Catálise , Cristalografia por Raios X , Humanos , Conformação Proteica , Multimerização Proteica , Pirofosfatases/antagonistas & inibidores , Soluções , Especificidade por Substrato
12.
IUCrJ ; 11(Pt 2): 260-274, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446458

RESUMO

The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.


Assuntos
Gammaproteobacteria , Oxirredução , Oxigenases de Função Mista , Polissacarídeos
13.
J Biol Chem ; 287(52): 43288-99, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23132856

RESUMO

The metabolism of the storage polysaccharides glycogen and starch is of vital importance to organisms from all domains of life. In bacteria, utilization of these α-glucans requires the concerted action of a variety of enzymes, including glycoside hydrolases, glycoside phosphorylases, and transglycosylases. In particular, transglycosylases from glycoside hydrolase family 13 (GH13) and GH77 play well established roles in α-glucan side chain (de)branching, regulation of oligo- and polysaccharide chain length, and formation of cyclic dextrans. Here, we present the biochemical and tertiary structural characterization of a new type of bacterial 1,4-α-glucan 4-α-glucosyltransferase from GH31. Distinct from 1,4-α-glucan 6-α-glucosyltransferases (EC 2.4.1.24) and 4-α-glucanotransferases (EC 2.4.1.25), this enzyme strictly transferred one glucosyl residue from α(1→4)-glucans in disproportionation reactions. Substrate hydrolysis was undetectable for a series of malto-oligosaccharides except maltose for which transglycosylation nonetheless dominated across a range of substrate concentrations. Crystallographic analysis of the enzyme in free, acarbose-complexed, and trapped 5-fluoro-ß-glucosyl-enzyme intermediate forms revealed extended substrate interactions across one negative and up to three positive subsites, thus providing structural rationalization for the unique, single monosaccharide transferase activity of the enzyme.


Assuntos
Proteínas de Bactérias/química , Cellvibrio/enzimologia , Glucosiltransferases/química , Oligossacarídeos/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Relação Estrutura-Atividade
14.
J Am Chem Soc ; 135(16): 6069-77, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23540833

RESUMO

The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme's three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61.


Assuntos
Cobre/química , Metaloproteínas/química , Oxigenases/química , Bacillus/enzimologia , Calorimetria , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Fluorometria , Histidina/química , Espectroscopia de Ressonância Magnética , Metais/química , Modelos Moleculares , Oxirredução , Conformação Proteica , Espectrofotometria Ultravioleta , Difração de Raios X
15.
Essays Biochem ; 67(3): 585-595, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36748351

RESUMO

The plant cell wall is rich in carbohydrates and many fungi and bacteria have evolved to take advantage of this carbon source. These carbohydrates are largely locked away in polysaccharides and so these organisms deploy a range of enzymes that can liberate individual sugars from these challenging substrates. Glycoside hydrolases (GHs) are the enzymes that are largely responsible for bringing about this sugar release; however, 12 years ago, a family of enzymes known as lytic polysaccharide monooxygenases (LPMOs) were also shown to be of key importance in this process. LPMOs are copper-dependent oxidative enzymes that can introduce chain breaks within polysaccharide chains. Initial work demonstrated that they could activate O2 to attack the substrate through a reaction that most likely required multiple electrons to be delivered to the enzyme. More recently, it has emerged that LPMO kinetics are significantly improved if H2O2 is supplied to the enzyme as a cosubstrate instead of O2. Only a single electron is required to activate an LPMO and H2O2 cosubstrate and the enzyme has been shown to catalyse multiple turnovers following the initial one-electron reduction of the copper, which is not possible if O2 is used. This has led to further studies of the roles of the electron donor in LPMO biochemistry, and this review aims to highlight recent findings in this area and consider how ongoing research could impact our understanding of the interplay between redox processes in nature.


Assuntos
Elétrons , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Peróxido de Hidrogênio , Cobre , Polissacarídeos
16.
RSC Chem Biol ; 4(1): 56-64, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36685256

RESUMO

Protein N-termini provide uniquely reactive motifs for single site protein modification. Though a number of reactions have been developed to target this site, the selectivity, generality, and stability of the conjugates formed has not been studied. We have therefore undertaken a comprehensive comparative study of the most promising methods for N-terminal protein modification, and find that there is no 'one size fits all' approach, necessitating reagent screening for a particular protein or application. Moreover, we observed limited stability in all cases, leading to a need for continued innovation and development in the bioconjugation field.

17.
J Biol Chem ; 286(18): 16470-81, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454646

RESUMO

Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric ß-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds.


Assuntos
Nucleotídeos de Desoxiuracil/química , Desoxiuridina/química , Leishmania major/enzimologia , Multimerização Proteica , Proteínas de Protozoários/química , Pirofosfatases/química , Antiprotozoários/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/enzimologia , Cristalografia por Raios X , Nucleotídeos de Desoxiuracil/metabolismo , Desoxiuridina/metabolismo , Desenho de Fármacos , Resistência a Medicamentos/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
ACS Chem Biol ; 16(7): 1152-1158, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34151573

RESUMO

Antimycins are anticancer compounds produced by a hybrid nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. The biosynthesis of these compounds is well characterized, with the exception of the standalone ß-ketoreductase enzyme AntM that is proposed to catalyze the reduction of the C8 carbonyl of the antimycin scaffold. Inactivation of antM and structural characterization suggested that rather than functioning as a post-PKS tailoring enzyme, AntM acts upon the terminal biosynthetic intermediate while it is tethered to the PKS acyl carrier protein. Mutational analysis identified two amino acid residues (Tyr185 and Phe223) that are proposed to serve as checkpoints controlling substrate access to the AntM active site. Aromatic checkpoint residues are conserved in uncharacterized standalone ß-ketoreductases, indicating that they may also act concomitantly with synthesis of the scaffold. These data provide novel mechanistic insights into the functionality of standalone ß-ketoreductases and will enable their reprogramming for combinatorial biosynthesis.


Assuntos
Oxirredutases do Álcool/metabolismo , Antimicina A/análogos & derivados , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Antimicina A/biossíntese , Antimicina A/metabolismo , Biocatálise , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Alinhamento de Sequência , Streptomyces/enzimologia , Especificidade por Substrato/genética
19.
Dalton Trans ; 49(11): 3413-3422, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32125319

RESUMO

Probing the detailed interaction between lytic polysaccharide monooxygenases (LPMOs) and their polysaccharide substrates is key to revealing further insights into the mechanism of action of this class of enzymes on recalcitrant biomass. This investigation is somewhat hindered, however, by the insoluble nature of the substrates, which precludes the use of most optical spectroscopic techniques. Herein, we report a new semi-oriented EPR method which evaluates directly the binding of cellulose-active LPMOs to crystalline cellulose. We make use of the intrinsic order of cellulose fibres in Apium graveolens (celery) to orient the LPMO with respect to the magnetic field of an EPR spectrometer. The subsequent angle-dependent changes observed in the EPR spectra can then be related to the orientation of the g matrix principal directions with respect to the magnetic field of the spectrometer and, hence, to the binding of the enzyme onto the cellulose fibres. This method, which does not require specific modification of standard CW-EPR equipment, can be used as a general procedure to investigate LPMO-cellulose interactions.


Assuntos
Celulose/química , Oxigenases de Função Mista/química , Polissacarídeos/química , Apium/química , Celulose/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Campos Magnéticos , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo
20.
IUCrJ ; 6(Pt 6): 1120-1133, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709067

RESUMO

Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of 'tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels-Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99-107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Šresolution. IdmH is a homodimer, with the individual protomers consisting of an α+ß barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels-Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels-Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA