Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Neurosci ; 43(8): 1360-1374, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36690450

RESUMO

Electronic nicotine delivery systems (ENDS) are distinctly different from combustible cigarettes because of the availability of flavor options. Subjective measures have been used to demonstrate that adults and adolescents prefer flavors for various reasons; (1) they are pleasing and (2) they mask the harshness of nicotine. Despite this, there have been few investigations into the molecular interactions that connect chemical flavorants to smoking or vaping-related behaviors. Here, we investigated the effects of three chemical flavorants (hexyl acetate, ethyl acetate, and methylbutyl acetate) that are found in green apple (GA) ENDS e-liquids but are also found in other flavor categories. We used a translationally relevant vapor self-administration mouse model and observed that adult male and female mice self-administered GA flavorants in the absence of nicotine. Using α4-mCherryα6-GFP nicotinic acetylcholine receptor (nAChR) mice, we observed that mice exposed to GA flavorants exhibited a sex-specific increase (upregulation) of nAChRs that was also brain-region specific. Electrophysiology revealed that mice exposed to GA flavorants exhibited enhanced firing of ventral tegmental area dopamine neurons. Fast-scan cyclic voltammetry revealed that electrically stimulated dopamine release in the nucleus accumbens core is increased in mice that are exposed to GA flavorants. These effects were similarly observed in the medial habenula. Overall, these findings demonstrate that ENDS flavors alone change neurobiology and may promote vaping-dependent behaviors in the absence of nicotine. Furthermore, the flavorant-induced changes in neurobiology parallel those caused by nicotine, which highlights the fact that nonmenthol flavorants may contribute to or enhance nicotine reward and reinforcement.SIGNIFICANCE STATEMENT The impact of flavors on vaping is a hotly debated topic; however, few investigations have examined this in a model that is relevant to vaping. Although a full understanding of the exact mechanism remains undetermined, our observations reveal that chemical flavorants in the absence of nicotine alter brain circuits relevant to vaping-related behavior. The fact that the flavorants investigated here exist in multiple flavor categories of vaping products highlights the fact that a multitude of flavored vaping products may pose a risk toward vaping-dependent behaviors even without the impact of nicotine. Furthermore, as the neurobiological changes have an impact on neurons of the reward system, there exists the possibility that nonmenthol flavorants may enhance nicotine reward and reinforcement.


Assuntos
Receptores Nicotínicos , Produtos do Tabaco , Vaping , Masculino , Feminino , Camundongos , Animais , Nicotina/farmacologia , Neurobiologia , Reforço Psicológico
2.
Nicotine Tob Res ; 26(3): 316-323, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37531402

RESUMO

INTRODUCTION: A wide variety of nicotine concentrations and formulations are available to users of electronic nicotine delivery systems (ENDS). This is increasingly true when considering the many flavors available with ENDS products. To date, there have been few preclinical investigations into the impact of nicotine doses, with and without flavors, on vaping-related behaviors. This present study evaluated how nicotine concentrations relevant to tank-based and pod-based ENDS, with and without flavors, impact reinforcement-related behavior in a mouse model. AIMS AND METHODS: Adult male and female C57/BL6J mice were used in vapor-inhalation self-administration assays. Mice were assigned e-liquids containing 6 mg/mL or 60 mg/mL nicotine. Additional mice were assigned these nicotine doses with green apple or menthol flavorants. Mice were trained on fixed-ratio 1 for 10, 2-hour sessions, then five sessions at FR3, three progressive ratio sessions, and two FR3 sessions. RESULTS: We observed male mice exhibited higher reinforcement-related behavior to menthol-flavored 6 mg/mL nicotine when compared to female mice. Males were only observed to have a menthol-induced enhancement of self-administration at 6 mg/mL nicotine and not 60 mg/mL nicotine. However, female mice exhibited significant menthol-induced increases in reinforcement-related behaviors with 60 mg/mL nicotine. CONCLUSIONS: These data provide evidence that males and females exhibit different dose sensitivities to nicotine. These sex-dependent differences in nicotine sensitivity also indicate that flavor-induced enhancement in nicotine intake is dependent on the different doses for each sex. IMPLICATIONS: There has been much discussion recently regarding the impact of flavors on vaping-related behavior. Our current study may support prior investigations that suggest flavors enhance the palatability of nicotine-containing products. However, this current study provides evidence that males and females exhibit different sensitivities to nicotine.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Masculino , Feminino , Camundongos , Animais , Nicotina , Mentol , Aromatizantes , Reforço Psicológico
3.
Nicotine Tob Res ; 24(8): 1161-1168, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34999827

RESUMO

INTRODUCTION: Nicotine addiction remains a primary health concern as tobacco smoking remains the number one cause of preventable death in America. At the same time, America is still facing the threat of the opioid epidemic. While the prevalence of smoking combustible cigarettes or electronic nicotine delivery systems in the United States varies between 12% and 35%, the smoking rates among the opioid use dependent (OUD) population is 74%-97%. We examined changes in brain reward mechanisms in which co-use of nicotine and opioids may result in enhanced reward and reinforcement. AIMS AND METHODS: Adult male and female α4-mCherryα6-GFP mice (C57BL/6J) were used in conditioned place preference (CPP) and microscopy assays to examine reward-related behavior and nicotinic acetylcholine receptor (nAChR) upregulation following treatments with saline, nicotine, morphine, or nicotine plus morphine. Following this, separate mice were trained in e-Vape self-administration assays to examine morphine's impact on nicotine reinforcement. RESULTS: We observed that nicotine and morphine coexposure in a CPP assay did not produce enhanced reward-related behavior when compared with nicotine or morphine alone. In parallel we observed coexposure reduced nicotine-induced upregulation of nAChRs on ventral tegmental area dopamine and GABA neurons. Additionally, we observed that concurrent morphine exposure reduced nicotine (plus menthol) vapor self-administration in male and female mice. CONCLUSIONS: While nicotine use is high among OUD individuals, our CPP assays suggest coexposure not only fails to enhance reward-related behavior but also reduces nicotine-induced changes in ventral tegmental area neurobiology. Our self-administration assays suggest that morphine exposure during nicotine acquisition reduces nicotine reinforcement-related behavior. IMPLICATIONS: While some may postulate that the co-use of opioids and nicotine may be driven by reward-related mechanisms, our data indicate that opioid exposure may hinder nicotine intake due to reduced upregulation of nAChRs critical for nicotine reward and reinforcement. Thus, the high co-use in OUD individuals may be a result of other mechanisms and this warrants further investigations into nicotine and opioid co-use.


Assuntos
Nicotina , Receptores Nicotínicos , Analgésicos Opioides , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Nicotina/farmacologia , Receptores Nicotínicos/genética , Recompensa , Regulação para Cima , Área Tegmentar Ventral/metabolismo
4.
J Neurochem ; 158(6): 1345-1358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34407206

RESUMO

The identification of proteins that are altered following nicotine/tobacco exposure can facilitate and positively impact the investigation of related diseases. In this report, we investigated the effects of chronic (-)-menthol exposure in 14 murine brain regions for changes in total ß2 subunit protein levels and changes in epibatidine binding levels using immunoblotting and radioligand binding assays. We identified the habenula as a region of interest due to the region's marked decreases in ß2 subunit and nAChR levels in response to chronic (-)-menthol alone. Thus, we further examined the habenula, a brain region associated with both the reward and withdrawal components of addiction, for additional protein level alterations using mass spectrometry. A total of 552 proteins with altered levels were identified after chronic (-)-menthol exposure. Enriched in the proteins with altered levels after (-)-menthol exposure were proteins associated with signaling, immune systems, RNA regulation, and protein transport. The continuation and expansion of the brain region-specific protein profiling in response to (-)-menthol will provide a better understanding of how this common flavorant in tobacco and e-liquid products may affect addiction and general health.


Assuntos
Habenula/efeitos dos fármacos , Habenula/metabolismo , Bombas de Infusão Implantáveis , Mentol/administração & dosagem , Proteogenômica/métodos , Receptores Nicotínicos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nicotínicos/genética
5.
Nicotine Tob Res ; 23(3): 566-572, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-32860507

RESUMO

INTRODUCTION: Although the use of combustible cigarettes has decreased in many urban regions of America, the use of electronic nicotine delivery systems (ENDS) has dramatically increased. ENDS, or electronic cigarettes (e-cigarettes), differ from combustible cigarettes given that there are no restrictions on flavorant additives in e-liquids. With 95% of ENDS users vaping flavored e-liquids, it is critical to understand how flavors alter vaping-related behaviors. We have previously shown that menthol and green apple flavors enhance nicotine reward-related behavior in a mouse model and in the present study have investigated how menthol and green apple flavors alter e-Vape self-administration behavior in male mice. METHODS: Adult C57/BL6J male mice were used in vapor-inhalation self-administration assays. Mice were assigned vaping e-liquids (6 mg/mL nicotine with or without menthol or green apple flavor) to escalate on a fixed-ratio 1 (FR1) schedule in daily 3-hour sessions to examine initiation-related behaviors. Following escalation, mice were transitioned to a FR3 and progressive ratio schedules in 3-hour sessions to examine reinforcement-related behaviors. RESULTS: Here we observed that male mice exhibited increased rates of self-administration escalation on a FR1 schedule when assigned to flavored e-liquids. Upon transition to FR3, mice continued to exhibit enhanced levels of reinforcement with flavored e-liquids. We also observed that mice self-administer zero-nicotine green apple flavored e-liquids. CONCLUSIONS: These data provide additional evidence that ENDS flavors enhance vaping-related initiation and reinforcement-related behavior and promote the need to continue investigating the role ENDS flavors play in vaping-related behaviors. IMPLICATIONS: There has been much discussion recently regarding the impact of flavors on vaping-related behavior. Our study here shows that flavors significantly enhance the acquisition and reinforcement of vaping-related behavior. This suggests that flavors in electronic nicotine delivery systems significantly increase the risk of addiction-related behaviors among users of vaping products.


Assuntos
Administração por Inalação , Aromatizantes/administração & dosagem , Nicotina/administração & dosagem , Reforço Psicológico , Recompensa , Autoadministração , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Molecules ; 26(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34443380

RESUMO

The popular tobacco and e-cigarette chemical flavorant (-)-menthol acts as a nonselective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs), and contributes to multiple physiological effects that exacerbates nicotine addiction-related behavior. Menthol is classically known as a TRPM8 agonist; therefore, some have postulated that TRPM8 antagonists may be potential candidates for novel nicotine cessation pharmacotherapies. Here, we examine a novel class of TRPM8 antagonists for their ability to alter nicotine reward-related behavior in a mouse model of conditioned place preference. We found that these novel ligands enhanced nicotine reward-related behavior in a mouse model of conditioned place preference. To gain an understanding of the potential mechanism, we examined these ligands on mouse α4ß2 nAChRs transiently transfected into neuroblastoma-2a cells. Using calcium flux assays, we determined that these ligands act as positive modulators (PMs) on α4ß2 nAChRs. Due to α4ß2 nAChRs' important role in nicotine dependence, as well as various neurological disorders including Parkinson's disease, the identification of these ligands as α4ß2 nAChR PMs is an important finding, and they may serve as novel molecular tools for future nAChR-related investigations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Recompensa , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Fatores de Tempo
7.
J Proteome Res ; 19(1): 36-48, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31657575

RESUMO

The identification of biomarkers that are altered following nicotine/tobacco exposure can facilitate the investigation of tobacco-related diseases. Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian central and peripheral nervous systems and the neuromuscular junction. Neuronal nAChR subunits (11) have been identified in mammals (α2-7, α9-10, ß2-4). We examined changes in ß2 nAChR subunit protein levels after chronic nicotine, (±)-menthol, or nicotine co-administered with (±)-menthol in nine murine brain regions. Our investigation of ß2 nAChR subunit level changes identified the hypothalamus as a novel region of interest for menthol exposure that demonstrated increased ß2 nAChR levels after (±)-menthol plus nicotine exposure compared to nicotine exposure alone. Using mass spectrometry, we further characterized changes in membrane protein abundance profiles in the hypothalamus to identify potential biomarkers of (±)-menthol plus nicotine exposure and proteins that may contribute to the elevated ß2 nAChR subunit levels. In the hypothalamus, 272 membrane proteins were identified with altered abundances after chronic nicotine plus menthol exposure with respect to chronic nicotine exposure without menthol. A comprehensive investigation of changes in nAChR and non-nAChR protein expression resulting from (±)-menthol plus nicotine in the brain may establish biomarkers to better understand the effects of these drugs on addiction and addiction-related diseases.


Assuntos
Nicotina , Receptores Nicotínicos , Animais , Encéfalo/metabolismo , Mentol , Camundongos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
8.
Molecules ; 25(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942576

RESUMO

Over the past two decades, combustible cigarette smoking has slowly declined by nearly 11% in America; however, the use of electronic cigarettes has increased tremendously, including among adolescents. While nicotine is the main addictive component of tobacco products and a primary concern in electronic cigarettes, this is not the only constituent of concern. There is a growing market of flavored products and a growing use of zero-nicotine e-liquids among electronic cigarette users. Accordingly, there are few studies that examine the impact of flavors on health and behavior. Menthol has been studied most extensively due to its lone exception in combustible cigarettes. Thus, there is a broad understanding of the neurobiological effects that menthol plus nicotine has on the brain including enhancing nicotine reward, altering nicotinic acetylcholine receptor number and function, and altering midbrain neuron excitability. Although flavors other than menthol were banned from combustible cigarettes, over 15,000 flavorants are available for use in electronic cigarettes. This review seeks to summarize the current knowledge on nicotine addiction and the various brain regions and nicotinic acetylcholine receptor subtypes involved, as well as describe the most recent findings regarding menthol and green apple flavorants, and their roles in nicotine addiction and vaping-related behaviors.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/química , Receptores Nicotínicos/metabolismo , Tabagismo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Nicotina/toxicidade , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Nicotínicos/química , Tabagismo/metabolismo
9.
Mol Pharmacol ; 95(4): 398-407, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670481

RESUMO

Heteromeric α3ß4 nicotinic acetylcholine (ACh) receptors (nAChRs) are pentameric ligand-gated cation channels that include at least two α3 and two ß4 subunits. They have functions in peripheral tissue and peripheral and central nervous systems. We examined the effects of chronic treatment with menthol, a major flavor additive in tobacco cigarettes and electronic nicotine delivery systems, on mouse α3ß4 nAChRs transiently transfected into neuroblastoma-2a cells. Chronic menthol treatment at 500 nM, near the estimated menthol concentration in the brain following cigarette smoking, altered neither the [ACh]-response relationship nor Zn2+ sensitivity of ACh-evoked currents, suggesting that menthol does not change α3ß4 nAChR subunit stoichiometry. Chronic menthol treatment failed to change the current density (peak current amplitude/cell capacitance) of 100 µM ACh-evoked currents. Chronic menthol treatment accelerated desensitization of 100 and 200 µM ACh-evoked currents. Chronic nicotine treatment (250 µM) decreased ACh-induced currents, and we found no additional effect of including chronic menthol. These data contrast with previously reported, marked effects of chronic menthol on ß2* nAChRs studied in the same expression system. Mechanistically, the data support the emerging interpretation that both chronic menthol and chronic nicotine act on nAChRs in the early exocytotic pathway, and that this pathway does not present a rate-limiting step to the export of α3ß4 nAChRs; these nAChRs include endoplasmic reticulum (ER) export motifs but not ER retention motifs. Previous reports show that smoking mentholated cigarettes enhances tobacco addiction; but our results show that this effect is unlikely to arise via menthol actions on α3ß4 nAChRs.


Assuntos
Acetilcolina/metabolismo , Membrana Celular/efeitos dos fármacos , Mentol/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Camundongos , Nicotina/farmacologia , Subunidades Proteicas/metabolismo
10.
Anal Chem ; 91(15): 10125-10131, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298524

RESUMO

We developed an approach utilizing nanoscale vesicles extracted from brain regions combined with single molecule imaging to monitor how an animal's physiological condition regulates the dynamics of protein distributions in different brain regions. This method was used to determine the effect of nicotine on the distribution of receptor stoichiometry in different mouse brain regions. Nicotine-induced upregulation of α4ß2 nicotinic acetylcholine receptors (nAChRs) is associated with changes in their expression, trafficking, and stoichiometry. The structural assembly of nAChRs has been quantified in cell culture based systems using single molecule techniques. However, these methods are not capable of quantifying biomolecule assembly that takes place in a live animal. Both nicotine-induced upregulation and changes in nAChR stoichiometry differ across brain regions. Our single molecule approach revealed that nicotine acts differentially across brain regions to alter assembly in response to exposure and withdrawal.


Assuntos
Encéfalo/metabolismo , Membrana Celular/metabolismo , Fluorescência , Microscopia de Fluorescência/métodos , Receptores Nicotínicos/metabolismo , Imagem Individual de Molécula/métodos , Animais , Encéfalo/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Camundongos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos
11.
J Neurosci ; 36(10): 2957-74, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961950

RESUMO

Upregulation of ß2 subunit-containing (ß2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate ß2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(ß2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(ß2)3 nAChRs. Menthol alone also increases the number of α6ß2 receptors that exclude the ß3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Mentol/farmacologia , Mesencéfalo/citologia , Nicotina/administração & dosagem , Receptores Nicotínicos/metabolismo , Recompensa , Regulação para Cima/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Exocitose/efeitos dos fármacos , Exocitose/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/patologia , Agonistas Nicotínicos/administração & dosagem , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética , Fatores de Tempo , Regulação para Cima/genética
12.
J Neurosci ; 36(1): 65-79, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26740650

RESUMO

Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and ß3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in tobacco users. Existing programs attempting to develop nicotinic drugs that might exert this apparent neuroprotective effect are asking whether agonists, antagonists, partial agonists, or channel blockers show the most promise. The underlying logic resembles the previous development of varenicline for smoking cessation. We studied whether, and how, nicotine produces neuroprotective effects in cultured dopaminergic neurons, an experimentally tractable, mechanistically revealing neuronal system. We show that nicotine, operating via nicotinic receptors, does protect these neurons against endoplasmic reticulum stress. However, the mechanism is probably "inside-out": pharmacological chaperoning in the endoplasmic reticulum. This cellular-level insight could help to guide neuroprotective strategies.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Dopaminérgicos/fisiologia , Nicotiana/química , Nicotina/administração & dosagem , Fumaça , Resposta a Proteínas não Dobradas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Resposta a Proteínas não Dobradas/efeitos dos fármacos
13.
J Neurosci ; 35(9): 3734-46, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740504

RESUMO

The glutamatergic subthalamic nucleus (STN) exerts control over motor output through nuclei of the basal ganglia. High-frequency electrical stimuli in the STN effectively alleviate motor symptoms in movement disorders, and cholinergic stimulation boosts this effect. To gain knowledge about the mechanisms of cholinergic modulation in the STN, we studied cellular and circuit aspects of nicotinic acetylcholine receptors (nAChRs) in mouse STN. We discovered two largely divergent microcircuits in the STN; these are regulated in part by either α4ß2 or α7 nAChRs. STN neurons containing α4ß2 nAChRs (α4ß2 neurons) received more glutamatergic inputs, and preferentially innervated GABAergic neurons in the substantia nigra pars reticulata. In contrast, STN neurons containing α7 nAChRs (α7 neurons) received more GABAergic inputs, and preferentially innervated dopaminergic neurons in the substantia nigra pars compacta. Interestingly, local electrical stimuli excited a majority (79%) of α4ß2 neurons but exerted strong inhibition in 58% of α7 neurons, indicating an additional diversity of STN neurons: responses to electrical stimulation. Chronic exposure to nicotine selectively affects α4ß2 nAChRs in STN: this treatment increased the number of α4ß2 neurons, upregulated α4-containing nAChR number and sensitivity, and enhanced the basal firing rate of α4ß2 neurons both ex vivo and in vivo. Thus, chronic nicotine enhances the function of the microcircuit involving α4ß2 nAChRs. This indicates chronic exposure to nicotinic agonist as a potential pharmacological intervention to alter selectively the balance between these two microcircuits, and may provide a means to inhibit substantia nigra dopaminergic neurons.


Assuntos
Rede Nervosa/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos , Animais , Colinérgicos/farmacologia , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/farmacologia , Sinapses/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos
14.
J Biol Chem ; 289(45): 31423-32, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25193667

RESUMO

Glycosylphosphatidylinositol-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4ß2 nAChRs within the endoplasmic reticulum. Lynx1 affects assembly of nascent α4 and ß2 subunits and alters the stoichiometry of the receptor population that reaches the plasma membrane. Additionally, these data suggest that lynx1 shifts nAChR stoichiometry to low sensitivity (α4)3(ß2)2 pentamers primarily through this interaction in the endoplasmic reticulum, rather than solely via direct modulation of activity on the plasma membrane. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any glycosylphosphatidylinositol-anchored protein, could act within the cell to alter assembly of a multisubunit protein.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/fisiologia , Neuropeptídeos/fisiologia , Receptores Nicotínicos/química , Acetilcolina/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cisteína/química , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Plasmídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
15.
Pharmacol Res ; 83: 20-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24593907

RESUMO

Chronic exposure to nicotine results in an upregulation of neuronal nicotinic acetylcholine receptors (nAChRs) at the cellular plasma membrane. nAChR upregulation occurs via nicotine-mediated pharmacological receptor chaperoning and is thought to contribute to the addictive properties of tobacco as well as relapse following smoking cessation. At the subcellular level, pharmacological chaperoning by nicotine and nicotinic ligands causes profound changes in the structure and function of the endoplasmic reticulum (ER), ER exit sites, the Golgi apparatus and secretory vesicles of cells. Chaperoning-induced changes in cell physiology exert an overall inhibitory effect on the ER stress/unfolded protein response. Cell autonomous factors such as the repertoire of nAChR subtypes expressed by neurons and the pharmacological properties of nicotinic ligands (full or partial agonist versus competitive antagonist) govern the efficiency of receptor chaperoning and upregulation. Together, these findings are beginning to pave the way for developing pharmacological chaperones to treat Parkinson's disease and nicotine addiction.


Assuntos
Descoberta de Drogas , Neurônios/efeitos dos fármacos , Nicotina/análogos & derivados , Nicotina/farmacologia , Doença de Parkinson/tratamento farmacológico , Receptores Nicotínicos/metabolismo , Animais , Humanos , Terapia de Alvo Molecular/métodos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Receptores Nicotínicos/análise , Receptores Nicotínicos/genética , Tabagismo/tratamento farmacológico , Tabagismo/genética , Tabagismo/metabolismo , Tabagismo/patologia , Regulação para Cima/efeitos dos fármacos
16.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233142

RESUMO

The medial habenula (MHb) has been identified as the limiting factor for nicotine intake and facilitating nicotine withdrawal. However, few studies have assessed MHb neuronal excitability in response to nicotine, and, currently, a gap in knowledge is present for finding behavioral correlates to neuronal excitability in the region. Moreover, no study to date has evaluated sex or nicotine dosage as factors of excitability in the MHb. Here, we utilized an e-vape self-administration (EVSA) model to determine differences between sexes with different nicotine dosages ± menthol. Following this paradigm, we employed patch-clamp electrophysiology to assess key metrics of MHb neuronal excitability in relation to behavioral endpoints. We observed female mice self-administered significantly more than males, regardless of dosage. We also observed a direct correlation between self-administration behavior and MHb excitability with low-dose nicotine + menthol in males. Conversely, a high dose of nicotine ± menthol yields an inverse correlation between excitability and self-administration behavior in males only. In addition, intrinsic excitability in the ventral tegmental area (VTA) does not track with the amount of nicotine self-administered. Rather, they correlate to the active/inactive discrimination of mice. Using fast-scan cyclic voltammetry, we also observed that dopamine release dynamics are linked to reinforcement-related behavior in males and motivation-related behaviors in females. These results point to a sex-specific difference in the activity of the MHb and VTA leading to distinct differences in self-administration behavior. His could lend evidence to clinical observations of smoking and nicotine-use behavior differing between males and females.


Assuntos
Habenula , Receptores Nicotínicos , Masculino , Feminino , Camundongos , Animais , Nicotina/farmacologia , Mentol/farmacologia , Receptores Nicotínicos/metabolismo , Área Tegmentar Ventral/metabolismo , Habenula/metabolismo
17.
Adv Pharmacol ; 99: 355-386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467487

RESUMO

Nicotine has been well-characterized for its ability to alter neurophysiology to promote rewarding and reinforcing properties. However, several exogenous chemicals possess properties that modulate or enhance nicotine's ability to alter neurophysiology. This chapter focuses on nicotine's impact on behavior through changes in neurophysiology and several chemical entities that in-turn modulate nicotine's ability to act as a neuromodulator.


Assuntos
Nicotina , Reforço Psicológico , Humanos , Nicotina/farmacologia , Recompensa
18.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963323

RESUMO

Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.


Assuntos
Retículo Endoplasmático , Receptores de GABA-A , Humanos , Células HEK293 , Retículo Endoplasmático/metabolismo , Animais , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Ratos , Chaperona BiP do Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
19.
Bioorg Med Chem ; 21(15): 4730-43, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23757208

RESUMO

The present study describes our ongoing efforts toward the discovery of drugs that selectively target nAChR subtypes. We exploited knowledge on nAChR ligands and their binding site that were previously identified by our laboratory through virtual screenings and identified benzamide analogs as a novel chemical class of neuronal nicotinic receptor (nAChR) ligands. The lead molecule, compound 1 (4-(allyloxy)-N-(6-methylpyridin-2-yl)benzamide) inhibits nAChR activity with an IC50 value of 6.0 (3.4-10.6) µM on human α4ß2 nAChRs with a ∼5-fold preference against human α3ß4 nAChRs. Twenty-six analogs of compound 1 were also either synthesized or purchased for structure-activity relationship (SAR) studies and provided information relating the chemical/structural properties of the molecules to their ability to inhibit nAChR activity. The discovery of subtype-selective ligands of nAChRs described here should contribute significantly to our understanding of the involvement of specific nAChR subtypes in normal and pathophysiological states.


Assuntos
Benzamidas/química , Benzamidas/farmacologia , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/química , Regulação Alostérica , Descoberta de Drogas , Humanos , Modelos Moleculares , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA