Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(1): 28-42, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34846055

RESUMO

The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.


Assuntos
Materiais Biocompatíveis , Lateralidade Funcional , Biomimética , Proteínas , Medicina Regenerativa
2.
J Am Chem Soc ; 141(35): 13877-13886, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31387351

RESUMO

Polysaccharides present in the glycocalyx and extracellular matrix are highly important for a multitude of functions. Oligo- and polysaccharides-based biomaterials are being developed to mimic the glycocalyx, but the spatial functionalization of these polysaccharides represents a major challenge. In this paper, a series of benzene-1,3,5-tricarboxamide (BTA) based supramolecular monomers is designed and synthesized with mono- (BTA-ß-d-glucose; BTA-Glc and BTA-α-d-mannose; BTA-Man) or disaccharides (BTA-ß-d-cellobiose; BTA-Cel) at their periphery or a monosaccharide (BTA-OEG4-α-d-mannose; BTA-OEG4-Man) at the end of a tetraethylene glycol linker. These glycosylated BTAs have been used to generate supramolecular assemblies and it is shown that the nature of the carbohydrate appendage is crucial for the supramolecular (co)polymerization behavior. BTA-Glc and BTA-Man are shown to assemble into micrometers long 1D (bundled) fibers with opposite helicities, whereas BTA-Cel and BTA-OEG4-Man formed small spherical micelles. The latter two monomers are used in a copolymerization approach with BTA-Glc, BTA-Man, or ethylene glycol BTA (BTA-OEG4) to give 1D fibers with BTA-Cel or BTA-OEG4-Man incorporated. Consequently, the carbohydrate appendage influences both the assembly behavior and the internal order. Using this approach it is possible to create 1D-fibers with adjustable saccharide densities exhibiting tailored dynamic exchange profiles. Furthermore, hydrogels with tunable mechanical properties can be achieved, opening up possibilities for the development of multicomponent functional biomaterials.

3.
Biomacromolecules ; 19(7): 2610-2617, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29677449

RESUMO

High concentrations of supplemented growth factors can cause oversaturation and adverse effects in in vitro and in vivo studies, though these supraphysiological concentrations are often required due to the low stability of growth factors. Here we demonstrate the stabilization of TGF-ß1 and BMP4 using supramolecular polymers. Inspired by heparan sulfate, sulfonated peptides were presented on a supramolecular polymer to allow for noncovalent binding to growth factors in solution. After mixing with excipient molecules, both TGF-ß1 and BMP4 were shown to have a prolonged half-life compared to the growth factors free in solution. Moreover, high cellular response was measured by a luciferase assay, indicating that TGF-ß1 remained highly active upon binding to the supramolecular assembly. The results demonstrate that significant lower concentrations of growth factors can be used when supramolecular polymers bearing growth factor binding moieties are implemented. This approach can also be exploited in hydrogel systems to control growth factor release.


Assuntos
Proteína Morfogenética Óssea 4/química , Polímeros/química , Fator de Crescimento Transformador beta/química , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Estabilidade Proteica , Pirimidinonas/química , Fator de Crescimento Transformador beta/metabolismo
4.
Chem Soc Rev ; 46(21): 6621-6637, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28991958

RESUMO

The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.


Assuntos
Materiais Biocompatíveis/síntese química , Polímeros/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Pesquisa Biomédica , Matriz Extracelular/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Polímeros/metabolismo
5.
Curr Opin Chem Biol ; 69: 102171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749930

RESUMO

Supramolecular glycopolymers exhibiting inherent dynamicity, tunability, and adaptivity allow us to arrive at a deeper understanding of multivalent carbohydrate-carbohydrate interactions and carbohydrate-protein interactions, both being essential to key biological events. The impacts of the carbohydrate segments in these supramolecular glycopolymers towards their structure, dynamics, and function as biomaterials are addressed in this minireview. Bottlenecks and challenges are discussed, and we speculate about possible future directions.


Assuntos
Carboidratos , Carboidratos/química
6.
Adv Mater ; 33(37): e2008111, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337776

RESUMO

The extracellular matrix (ECM) forms through hierarchical assembly of small and larger polymeric molecules into a transient, hydrogel-like fibrous network that provides mechanical support and biochemical cues to cells. Synthetic, fibrous supramolecular networks formed via non-covalent assembly of various molecules are therefore potential candidates as synthetic mimics of the natural ECM, provided that functionalization with biochemical cues is effective. Here, combinations of slow and fast exchanging molecules that self-assemble into supramolecular fibers are employed to form transient hydrogel networks with tunable dynamic behavior. Obtained results prove that modulating the ratio between these molecules dictates the extent of dynamic behavior of the hydrogels at both the molecular and the network level, which is proposed to enable effective incorporation of cell-adhesive functionalities in these materials. Excitingly, the dynamic nature of the supramolecular components in this system can be conveniently employed to formulate multicomponent supramolecular hydrogels for easy culturing and encapsulation of single cells, spheroids, and organoids. Importantly, these findings highlight the significance of molecular design and exchange dynamics for the application of supramolecular hydrogels as synthetic ECM mimics.


Assuntos
Encapsulamento de Células/métodos , Hidrogéis/química , Vasos Sanguíneos/citologia , Adesão Celular , Matriz Extracelular/química , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/química , Humanos , Polietilenoglicóis/química , Pirimidinonas/sangue , Células-Tronco/citologia , Células-Tronco/metabolismo
7.
Waste Manag ; 118: 501-509, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980729

RESUMO

Grapevine prunings are an ideal sustainable additive to wood-based composites, providing a powerful resource stream, reducing the demand of logging of forests. Valorisation of grapevine prunings into commercial products further reduces greenhouse gas emissions caused by waste vegetation break-down. Particleboard is a ubiquitous wood-based composite with over 97 million m3 produced annually from soft wood. Agricultural crop waste is ideal for incorporation into particleboard, however maintaining the density and mechanical properties with these additives is imperative. Herein, mixed grapevine/pine cores comprising of 100%, 25% and 10% grapevine particles were produced and the mechanical and density properties of 16 mm thick moisture resistant particleboards were evaluated. Hybrid particleboards based on 10% grapevine and 90% pine showed great promise, surpassing global industry standards for key mechanical properties. Hybrid particleboards displayed a higher surface density and a steeper vertical density gradient than the 100% pine control boards, due to grapevine particles filling voids between the pine, thereby improving the mechanical properties. This work forms a foundation for the continued study of agricultural waste into wood-based composites.


Assuntos
Pinus , Madeira , Indústrias , Teste de Materiais
8.
ACS Nano ; 13(8): 8512-8516, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31415144

RESUMO

Nature has inspired the development of many life-like materials. Although still simplistic, key biological functionalities have been incorporated, enabling a wide variety of applications. DNA-based systems, in particular, show high promise due to their ability to merge specific Watson-Crick base pairing with unique properties that are also programmable, scalable, or dynamic. By combining the fields of DNA-based covalent polymers, DNA origami, and DNA-functionalized supramolecular polymers, new frontiers in next-generation DNA-based hybrid materials that can outperform current bioartificial systems will be realized. Many challenges must still be overcome before this emerging technology can be materialized.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia , Polímeros/química , Hibridização de Ácido Nucleico
9.
Chem Commun (Camb) ; 53(14): 2279-2282, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154855

RESUMO

Structural and kinetic exchange properties of supramolecular polymers composed of mono- and bivalent ureidopyrimidinone-based monomers are investigated in aqueous solutions. It is shown that exchange dynamics can be controlled by mixing different types of monomers. This tunability widens the scope in their design as biomaterials.

10.
Biomaterials ; 76: 187-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524538

RESUMO

In an in-situ approach towards tissue engineered cardiovascular replacement grafts, cell-free scaffolds are implanted that engage in endogenous tissue formation. Bioactive molecules can be incorporated into such grafts to facilitate cellular recruitment. Stromal cell derived factor 1α (SDF1α) is a powerful chemoattractant of lymphocytes, monocytes and progenitor cells and plays an important role in cellular signaling and tissue repair. Short SDF1α-peptides derived from its receptor-activating domain are capable of activating the SDF1α-specific receptor CXCR4. Here, we show that SDF1α-derived peptides can be chemically modified with a supramolecular four-fold hydrogen bonding ureido-pyrimidinone (UPy) moiety, that allows for the convenient incorporation of the UPy-SDF1α-derived peptides into a UPy-modified polymer scaffold. We hypothesized that a UPy-modified material bioactivated with these UPy-SDF1α-derived peptides can retain and stimulate circulating cells in an anti-inflammatory, pro-tissue formation signaling environment. First, the early recruitment of human peripheral blood mononuclear cells to the scaffolds was analyzed in vitro in a custom-made mesofluidic device applying physiological pulsatile fluid flow. Preferential adhesion of lymphocytes with reduced expression of inflammatory factors TNFα, MCP1 and lymphocyte activation marker CD25 was found in the bioactivated scaffolds, indicating a reduction in inflammatory signaling. As a proof of concept, in-vivo implantation of the bioactivated scaffolds as rat abdominal aorta interposition grafts showed increased cellularity by CD68+ cells after 7 days. These results indicate that a completely synthetic, cell-free biomaterial can attract and stimulate specific leukocyte populations through supramolecular incorporation of short bioactive SDF1α derived peptides.


Assuntos
Prótese Vascular , Quimiocina CXCL12/química , Peptídeos/química , Humanos , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Proteólise , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA