Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell ; 142(1): 77-88, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603016

RESUMO

Cytotoxicity of cisplatin and mitomycin C (MMC) is ascribed largely to their ability to generate interstrand crosslinks (ICLs) in DNA, which block the progression of replication forks. The processing of ICLs requires the Fanconi anemia (FA) pathway, excision repair, and translesion DNA synthesis (TLS). It also requires homologous recombination (HR), which repairs double-strand breaks (DSBs) generated by cleavage of the blocked replication forks. Here we describe KIAA1018, an evolutionarily conserved protein that has an N-terminal ubiquitin-binding zinc finger (UBZ) and a C-terminal nuclease domain. KIAA1018 is a 5'-->3' exonuclease and a structure-specific endonuclease that preferentially incises 5' flaps. Like cells from FA patients, human cells depleted of KIAA1018 are sensitized to ICL-inducing agents and display chromosomal instability. The link of KIAA1018 to the FA pathway is further strengthened by its recruitment to DNA damage through interaction of its UBZ domain with monoubiquitylated FANCD2. We therefore propose to name KIAA1018 FANCD2-associated nuclease, FAN1.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Mitomicina/farmacologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Dano ao DNA/efeitos dos fármacos , Endodesoxirribonucleases , Endonucleases/metabolismo , Exodesoxirribonucleases/química , Humanos , Dados de Sequência Molecular , Enzimas Multifuncionais , Fosfodiesterase I/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
Genes Dev ; 30(19): 2213-2225, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798844

RESUMO

Caspases are key components of apoptotic pathways. Regulation of caspases occurs at several levels, including transcription, proteolytic processing, inhibition of enzymatic function, and protein degradation. In contrast, little is known about the extent of post-transcriptional control of caspases. Here, we describe four conserved RNA-binding proteins (RBPs)-PUF-8, MEX-3, GLD-1, and CGH-1-that sequentially repress the CED-3 caspase in distinct regions of the Caenorhabditis elegans germline. We demonstrate that GLD-1 represses ced-3 mRNA translation via two binding sites in its 3' untranslated region (UTR), thereby ensuring a dual control of unwanted cell death: at the level of p53/CEP-1 and at the executioner caspase level. Moreover, we identified seven RBPs that regulate human caspase-3 expression and/or activation, including human PUF-8, GLD-1, and CGH-1 homologs PUM1, QKI, and DDX6. Given the presence of unusually long executioner caspase 3' UTRs in many metazoans, translational control of executioner caspases by RBPs might be a strategy used widely across the animal kingdom to control apoptosis.


Assuntos
Apoptose/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caspases/genética , Caspases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/citologia , Células HeLa , Humanos , Processamento Pós-Transcricional do RNA
3.
Mol Cell ; 41(6): 733-46, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21353615

RESUMO

Short hairpin RNAs (shRNAs) provide powerful experimental tools by enabling stable and regulated gene silencing through programming of endogenous microRNA pathways. Since requirements for efficient shRNA biogenesis and target suppression are largely unknown, many predicted shRNAs fail to efficiently suppress their target. To overcome this barrier, we developed a "Sensor assay" that enables the biological identification of effective shRNAs at large scale. By constructing and evaluating 20,000 RNAi reporters covering every possible target site in nine mammalian transcripts, we show that our assay reliably identifies potent shRNAs that are surprisingly rare and predominantly missed by existing algorithms. Our unbiased analyses reveal that potent shRNAs share various predicted and previously unknown features associated with specific microRNA processing steps, and suggest a model for competitive strand selection. Together, our study establishes a powerful tool for large-scale identification of highly potent shRNAs and provides insights into sequence requirements of effective RNAi.


Assuntos
Técnicas Biossensoriais , Ensaios de Triagem em Larga Escala/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Algoritmos , Animais , Fibroblastos/citologia , Fibroblastos/fisiologia , Inativação Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Células NIH 3T3
4.
Genome Res ; 25(11): 1680-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26232411

RESUMO

In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the Caenorhabditis elegans miR-58 miRNA family, composed primarily of the four highly abundant members miR-58.1, miR-80, miR-81, and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting. We found that miR-58 family members repress largely overlapping sets of targets in a predominantly additive fashion. Progressive deletions of miR-58 family members lead to cumulative up-regulation of target protein and RNA levels. Phenotypic defects could only be observed in the family quadruple mutant, which also showed the strongest change in target protein levels. Interestingly, although the seed sequences of miR-80 and miR-58.1 differ in a single nucleotide, predicted canonical miR-80 targets were efficiently up-regulated in the mir-58.1 single mutant, indicating functional redundancy of distinct members of this miRNA family. At the aggregate level, target binding leads mainly to mRNA degradation, although we also observed some degree of translational inhibition, particularly in the single miR-58 family mutants. These results provide a framework for understanding how miRNA family members interact to regulate target mRNAs.


Assuntos
Caenorhabditis elegans/genética , MicroRNAs/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Regulação para Cima , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Repressão Epigenética , MicroRNAs/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma
5.
Mol Cell Proteomics ; 15(5): 1670-80, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944343

RESUMO

Natural genetic variation is the raw material of evolution and influences disease development and progression. An important question is how this genetic variation translates into variation in protein abundance. To analyze the effects of the genetic background on gene and protein expression in the nematode Caenorhabditis elegans, we quantitatively compared the two genetically highly divergent wild-type strains N2 and CB4856. Gene expression was analyzed by microarray assays, and proteins were quantified using stable isotope labeling by amino acids in cell culture. Among all transcribed genes, we found 1,532 genes to be differentially transcribed between the two wild types. Of the total 3,238 quantified proteins, 129 proteins were significantly differentially expressed between N2 and CB4856. The differentially expressed proteins were enriched for genes that function in insulin-signaling and stress-response pathways, underlining strong divergence of these pathways in nematodes. The protein abundance of the two wild-type strains correlates more strongly than protein abundance versus transcript abundance within each wild type. Our findings indicate that in C. elegans only a fraction of the changes in protein abundance can be explained by the changes in mRNA abundance. These findings corroborate with the observations made across species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Perfilação da Expressão Gênica/métodos , Variação Genética , Proteômica/métodos , Animais , Evolução Biológica , Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Marcação por Isótopo/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
6.
Nat Rev Genet ; 12(8): 575-82, 2011 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-21765459

RESUMO

Model organisms have played a huge part in the history of studies of human genetic disease, both in identifying disease genes and characterizing their normal and abnormal functions. But is the importance of model organisms diminishing? The direct discovery of disease genes and variants in humans has been revolutionized, first by genome-wide association studies and now by whole-genome sequencing. Not only is it now much easier to directly identify potential disease genes in humans, but the genetic architecture that is being revealed in many cases is hard to replicate in model organisms. Furthermore, disease modelling can be done with increasing effectiveness using human cells. Where does this leave non-human models of disease?


Assuntos
Estudos de Associação Genética/tendências , Genoma Humano , Modelos Animais , Animais , Mapeamento Cromossômico , Humanos , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
Proc Natl Acad Sci U S A ; 111(27): E2787-96, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24879441

RESUMO

Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of ß-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor.


Assuntos
Agaricales/imunologia , Imunidade Inata , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/imunologia , Caranguejos Ferradura/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metilação , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
8.
Nature ; 465(7298): 577-83, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20520707

RESUMO

Hypoxia-inducible factor (HIF) is a transcription factor that regulates fundamental cellular processes in response to changes in oxygen concentration. HIFalpha protein levels are increased in most solid tumours and correlate with patient prognosis. The link between HIF and apoptosis, a major determinant of cancer progression and treatment outcome, is poorly understood. Here we show that Caenorhabditis elegans HIF-1 protects against DNA-damage-induced germ cell apoptosis by antagonizing the function of CEP-1, the homologue of the tumour suppressor p53. The antiapoptotic property of HIF-1 is mediated by means of transcriptional upregulation of the tyrosinase family member TYR-2 in the ASJ sensory neurons. TYR-2 is secreted by ASJ sensory neurons to antagonize CEP-1-dependent germline apoptosis. Knock down of the TYR-2 homologue TRP2 (also called DCT) in human melanoma cells similarly increases apoptosis, indicating an evolutionarily conserved function. Our findings identify a novel link between hypoxia and programmed cell death, and provide a paradigm for HIF-1 dictating apoptotic cell fate at a distance.


Assuntos
Apoptose , Caenorhabditis elegans/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Células Receptoras Sensoriais/enzimologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Apoptose/efeitos da radiação , Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Hipóxia Celular , Dano ao DNA , Células Germinativas/metabolismo , Células Germinativas/patologia , Humanos , Oxirredutases Intramoleculares/deficiência , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Monofenol Mono-Oxigenase/deficiência , Células Receptoras Sensoriais/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
PLoS Genet ; 9(11): e1003943, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24278030

RESUMO

Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment.


Assuntos
Apoptose/efeitos da radiação , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , RNA Ribossômico/biossíntese , Ribossomos/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Células Germinativas/efeitos da radiação , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação Puntual , RNA Polimerase I/genética , RNA Ribossômico/efeitos da radiação , Radiação Ionizante , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
10.
Physiology (Bethesda) ; 29(3): 168-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24789981

RESUMO

Eukaryotic life depends largely on molecular oxygen. During evolution, ingenious mechanisms have evolved that allow organisms to adapt when oxygen levels decrease. Many of these adaptional responses to low oxygen are orchestrated by the heterodimeric transcription factor hypoxia-inducible factor (HIF). Here, we review the link between HIF and apoptosis.


Assuntos
Apoptose/fisiologia , Morte Celular/fisiologia , Hipóxia/fisiopatologia , Adaptação Fisiológica/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Hipóxia/metabolismo , Oxigênio/metabolismo
11.
Genome Res ; 22(7): 1360-71, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22454234

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that negatively regulate gene expression. As miRNAs are involved in a wide range of biological processes and diseases, much effort has been invested in identifying their mRNA targets. Here, we present a novel combinatorial approach, RIP-chip-SRM (RNA-binding protein immunopurification + microarray + targeted protein quantification via selected reaction monitoring), to identify de novo high-confidence miRNA targets in the nematode Caenorhabditis elegans. We used differential RIP-chip analysis of miRNA-induced silencing complexes from wild-type and miRNA mutant animals, followed by quantitative targeted proteomics via selected reaction monitoring to identify and validate mRNA targets of the C. elegans bantam homolog miR-58. Comparison of total mRNA and protein abundance changes in mir-58 mutant and wild-type animals indicated that the direct bantam/miR-58 targets identified here are mainly regulated at the level of protein abundance, not mRNA stability.


Assuntos
Caenorhabditis elegans/genética , MicroRNAs/metabolismo , Proteômica/métodos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/metabolismo , Cruzamentos Genéticos , Técnicas Imunológicas/métodos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Plasmídeos/genética , Plasmídeos/metabolismo , Biossíntese de Proteínas , Interferência de RNA , Estabilidade de RNA , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transgenes
12.
Nucleic Acids Res ; 41(Database issue): D738-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180786

RESUMO

Here, we present WormQTL (http://www.wormqtl.org), an easily accessible database enabling search, comparative analysis and meta-analysis of all data on variation in Caenorhabditis spp. Over the past decade, Caenorhabditis elegans has become instrumental for molecular quantitative genetics and the systems biology of natural variation. These efforts have resulted in a valuable amount of phenotypic, high-throughput molecular and genotypic data across different developmental worm stages and environments in hundreds of C. elegans strains. WormQTL provides a workbench of analysis tools for genotype-phenotype linkage and association mapping based on but not limited to R/qtl (http://www.rqtl.org). All data can be uploaded and downloaded using simple delimited text or Excel formats and are accessible via a public web user interface for biologists and R statistic and web service interfaces for bioinformaticians, based on open source MOLGENIS and xQTL workbench software. WormQTL welcomes data submissions from other worm researchers.


Assuntos
Caenorhabditis/genética , Bases de Dados Genéticas , Locos de Características Quantitativas , Animais , Caenorhabditis elegans/genética , Expressão Gênica , Estudos de Associação Genética , Variação Genética , Internet
13.
Nat Methods ; 8(5): 430-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21423193

RESUMO

Selected reaction monitoring (SRM) is a targeted mass spectrometric method that is increasingly used in proteomics for the detection and quantification of sets of preselected proteins at high sensitivity, reproducibility and accuracy. Currently, data from SRM measurements are mostly evaluated subjectively by manual inspection on the basis of ad hoc criteria, precluding the consistent analysis of different data sets and an objective assessment of their error rates. Here we present mProphet, a fully automated system that computes accurate error rates for the identification of targeted peptides in SRM data sets and maximizes specificity and sensitivity by combining relevant features in the data into a statistical model.


Assuntos
Processamento Eletrônico de Dados/métodos , Espectrometria de Massas/estatística & dados numéricos , Proteômica/estatística & dados numéricos , Algoritmos , Humanos , Modelos Estatísticos , Peptídeos/química
14.
PLoS Pathog ; 8(5): e1002706, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615566

RESUMO

Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcß1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a ß-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity.


Assuntos
Agaricales/imunologia , Agaricales/metabolismo , Carpóforos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans , Drosophila melanogaster , Carpóforos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Lectinas/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Trissacarídeos/metabolismo
15.
Mol Cell Proteomics ; 11(4): O110.007088, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22057310

RESUMO

Protein identifications, instead of peptide-spectrum matches, constitute the biologically relevant result of shotgun proteomics studies. How to appropriately infer and report protein identifications has triggered a still ongoing debate. This debate has so far suffered from the lack of appropriate performance measures that allow us to objectively assess protein inference approaches. This study describes an intuitive, generic and yet formal performance measure and demonstrates how it enables experimentalists to select an optimal protein inference strategy for a given collection of fragment ion spectra. We applied the performance measure to systematically explore the benefit of excluding possibly unreliable protein identifications, such as single-hit wonders. Therefore, we defined a family of protein inference engines by extending a simple inference engine by thousands of pruning variants, each excluding a different specified set of possibly unreliable identifications. We benchmarked these protein inference engines on several data sets representing different proteomes and mass spectrometry platforms. Optimally performing inference engines retained all high confidence spectral evidence, without posterior exclusion of any type of protein identifications. Despite the diversity of studied data sets consistently supporting this rule, other data sets might behave differently. In order to ensure maximal reliable proteome coverage for data sets arising in other studies we advocate abstaining from rigid protein inference rules, such as exclusion of single-hit wonders, and instead consider several protein inference approaches and assess these with respect to the presented performance measure in the specific application context.


Assuntos
Proteômica/métodos , Ferramenta de Busca , Animais , Proteínas de Bactérias/análise , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/análise , Leptospira interrogans , Schizosaccharomyces , Espectrometria de Massas em Tandem
16.
Nucleic Acids Res ; 40(13): 6304-18, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467213

RESUMO

Despite the many advantages of Caenorhabditis elegans, biochemical approaches to study tissue-specific gene expression in post-embryonic stages are challenging. Here, we report a novel experimental approach for efficient determination of tissue-specific transcriptomes involving the rapid release and purification of nuclei from major tissues of post-embryonic animals by fluorescence-activated nuclei sorting (FANS), followed by deep sequencing of linearly amplified 3'-end regions of transcripts (3'-end-seq). We employed these approaches to compile the transcriptome of the developed C. elegans intestine and used this to analyse tissue-specific cleavage and polyadenylation. In agreement with intestinal-specific gene expression, highly expressed genes have enriched GATA-elements in their promoter regions and their functional properties are associated with processes that are characteristic for the intestine. We systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including more than 3000 sites that have previously not been identified. The detailed analysis of the 3'-ends of the nuclear mRNA revealed widespread alternative polyA site use (APA) in intestinally expressed genes. Importantly, we found that intestinal polyA sites that undergo APA tend to have U-rich and/or A-rich upstream auxiliary elements that may contribute to the regulation of 3'-end formation in the intestine.


Assuntos
Caenorhabditis elegans/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Poliadenilação , Análise de Sequência de RNA , Animais , Caenorhabditis elegans/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/genética , Citometria de Fluxo , Mucosa Intestinal/metabolismo , Transcriptoma
17.
Proc Natl Acad Sci U S A ; 108(42): 17396-401, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21969579

RESUMO

The recognition and clearance of dead cells is a process that must occur efficiently to prevent an autoimmune or inflammatory response. Recently, a process was identified wherein the autophagy machinery is recruited to pathogen-containing phagosomes, termed MAPLC3A (LC3)-associated phagocytosis (LAP), which results in optimal degradation of the phagocytosed cargo. Here, we describe the engagement of LAP upon uptake of apoptotic, necrotic, and RIPK3-dependent necrotic cells by macrophages. This process is dependent on some members of the classical autophagy pathway, including Beclin1, ATG5, and ATG7. In contrast, ULK1, despite being required for autophagy, is dispensable for LAP induced by uptake of microbes or dead cells. LAP is required for efficient degradation of the engulfed corpse, and in the absence of LAP, engulfment of dead cells results in increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines. LAP is triggered by engagement of the TIM4 receptor by either phosphatidylserine (PtdSer)-displaying dead cells or PtdSer-containing liposomes. Therefore, the consequence of phagocytosis of dead cells is strongly affected by those components of the autophagy pathway involved in LAP.


Assuntos
Proteínas Associadas aos Microtúbulos/imunologia , Fagocitose/imunologia , Animais , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Citocinas/biossíntese , Feminino , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Necrose/imunologia , Fagossomos/imunologia , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Receptores de Superfície Celular/imunologia , Transdução de Sinais/imunologia
18.
Proteomics ; 13(17): 2537-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24039199

RESUMO

Model organisms are an important tool for the development and validation of analytical approaches for proteomics and for the study of basic mechanisms of biological processes. The Initiative on Model Organism Proteomics (iMOP) organized a session during the 11th HUPO World Congress in Boston in 2012, highlighting the potential of proteomics studies in model organism for the elucidation of important mechanisms regulating the interaction of humans with its environment. Major subjects were the use of model organisms for the study of molecular events triggering the interaction of host organisms with the surrounding microbiota and the elucidation of the complex influence of nutrition on the health of human beings.


Assuntos
Modelos Animais , Modelos Biológicos , Proteômica/métodos , Animais , Bactérias/genética , Bactérias/imunologia , Humanos , Insetos/genética , Insetos/imunologia , Microbiota/genética , Fenômenos Fisiológicos da Nutrição , Plantas/genética , Proteoma/análise , Proteoma/genética , Proteoma/metabolismo
19.
Nat Methods ; 7(10): 837-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20835247

RESUMO

Efficient experimental strategies are needed to validate computationally predicted microRNA (miRNA) target genes. Here we present a large-scale targeted proteomics approach to validate predicted miRNA targets in Caenorhabditis elegans. Using selected reaction monitoring (SRM), we quantified 161 proteins of interest in extracts from wild-type and let-7 mutant worms. We demonstrate by independent experimental downstream analyses such as genetic interaction, as well as polysomal profiling and luciferase assays, that validation by targeted proteomics substantially enriched for biologically relevant let-7 interactors. For example, we found that the zinc finger protein ZTF-7 was a bona fide let-7 miRNA target. We also validated predicted miR-58 targets, demonstrating that this approach is adaptable to other miRNAs. We propose that targeted mass spectrometry can be applied generally to validate candidate lists generated by computational methods or in large-scale experiments, and that the described strategy should be readily adaptable to other organisms.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , MicroRNAs/genética , Modelos Genéticos , Proteômica/métodos , Animais , Sequência de Bases , Caenorhabditis elegans/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genes de Helmintos , Luciferases/genética , Espectrometria de Massas , MicroRNAs/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
20.
PLoS Biol ; 8(2): e1000297, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20126385

RESUMO

Wnt signalling pathways have extremely diverse functions in animals, including induction of cell fates or tumours, guidance of cell movements during gastrulation, and the induction of cell polarity. Wnt can induce polar changes in cellular morphology by a remodelling of the cytoskeleton. However, how activation of the Frizzled receptor induces cytoskeleton rearrangement is not well understood. We show, by an in depth 4-D microscopy analysis, that the Caenorhabditis elegans Wnt pathway signals to CED-10/Rac via two separate branches to regulate modulation of the cytoskeleton in different cellular situations. Apoptotic cell clearance and migration of the distal tip cell require the MOM-5/Fz receptor, GSK-3 kinase, and APC/APR-1, which activate the CED-2/5/12 branch of the engulfment machinery. MOM-5 (Frizzled) thus can function as an engulfment receptor in C. elegans. Our epistatic analyses also suggest that the two partially redundant signalling pathways defined earlier for engulfment may act in a single pathway in early embryos. By contrast, rearrangement of mitotic spindles requires the MOM-5/Fz receptor, GSK-3 kinase, and beta-catenins, but not the downstream factors LIT-1/NLK or POP-1/Tcf. Taken together, our results indicate that in multiple developmental processes, CED-10/Rac can link polar signals mediated by the Wnt pathway to rearrangements of the cytoskeleton.


Assuntos
Apoptose/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Transdução de Sinais/fisiologia , Fuso Acromático/metabolismo , Proteínas Wnt/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Apoptose/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Proteínas rac de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA