Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Chembiochem ; 25(11): e202300854, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38613434

RESUMO

The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.


Assuntos
Dipeptídeos , Norleucina , Dipeptídeos/metabolismo , Dipeptídeos/química , Norleucina/metabolismo , Norleucina/análogos & derivados , Norleucina/química , Saccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosilação , Pirróis
2.
Crit Rev Toxicol ; 54(8): 485-617, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39150724

RESUMO

The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.


Considering the implication of endogenous glycation compounds in aging and disease, dietary exposure via consumption of an "AGE (advanced glycation end product) rich diet" is increasingly suggested to pose a potential health risk. However, studies attempting to assess an association between dietary glycation compounds and adverse health effects frequently suffer from insufficient chemical analysis of glycation compounds, including inadequate structural characterization and limited quantitative data. The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) previously defined quality criteria for studies designed to assess the effects of dietary glycation compounds on human health. The aim of the present work is to summarize data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and to systematically evaluate if the currently available scientific database allows for a conclusive assessment of potential health effects of defined glycation compounds (Part B).The term "glycation compounds" comprises a wide range of structurally diverse compounds that derive from the Maillard reaction, a chemical reaction between reducing carbohydrates and amino compounds that occurs during food processing. In the first stage of the Maillard reaction, reducing sugars such as glucose and fructose react for instance with the ε-amino group of lysine, which is most abundant in food ("glycation" of lysine). Subsequently, these primary reaction products undergo Amadori rearrangement to yield products (ARP) such as fructosyllysine (FL) from glucose and also Heyns rearrangement products (HRPs) such as glucosyl- and mannosyllysine from fructose. While ARPs are rapidly formed during food processing, they are not stable and undergo degradation reactions, predominantly to 1,2-dicarbonyl compounds such as glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3-DG), which are highly reactive. The last stage of the Maillard reaction is characterized predominantly by the reaction of these dicarbonyl compounds with nucleophilic groups of proteins. The side-chains of lysine and arginine residues as well as the N-termini of proteins are important reaction sites. Carboxyalkylated amino acids such as N-ε-carboxymethyllysine (CML) and N-ε-carboxyethyllysine (CEL) result from reaction of the ε-amino group of lysine with the dicarbonyl compounds GO and MGO. Dicarbonyl compounds with C5 or C6 chains can form cyclic pyrrole derivatives at the ε-amino group of lysine. The most important example for this reaction is pyrraline, which is formed from reaction of 3-DG and lysine. The reaction of dicarbonyl compounds with the guanidino group of arginine mainly leads to hydroimidazolones, of which the MGO-derived hydroimidazolone 1 (MG-H1) is best described in food systems.ARPs are the most abundant glycation products found in food. Up to 55% of the lysine residues in food may be modified to ARPs at the side-chain. Food items particularly rich in ARPs include bread, rusk, biscuits, chocolate, and powdered infant formulas. Exposure estimates range between 0.6­1.6 mg/kg body weight (bw), although exposure may be as high as 14.3 mg/kg bw in individuals consuming foods with extreme ARP concentrations. Foods particularly rich in dicarbonyl compounds include heat-treated or long-term stored items rich in reducing sugars such as jams, alternative sweeteners, soft drinks, honey, candies, cookies, and vinegars, especially balsamico-type vinegars. The main contributors to the daily intake of MGO, GO, and 3-DG are coffee and bread. Dietary exposure to dicarbonyl compounds has been estimated to range between 0.02­0.29 mg/kg bw/d for MGO, 0.04­0.16 mg/kg bw/d for GO, 0.14­2.3 mg/kg bw/d for 3-DG, and 0.08­0.13 mg/kg bw/d for 3-deoxygalactosone (3-DGal). Dietary intake of 5-hydroxymethylfurfural (HMF), which can be formed from 3-DG, is estimated to range between 0.0001­0.9 mg/kg bw/d. Exposure estimates for individual glycated amino acids range from 0.03­0.35 mg/kg bw/d for CML, 0.02­0.04 mg/kg bw/d for CEL and 0.19­0.41 mg/kg bw/d for MG-H1. From a model diet consisting of 1 L milk, 500 g bakery products and 400 mL coffee, an intake of pyrraline corresponding to 0.36 mg/kg bw/d for a 70 kg person was estimated.Quantitative analysis of individual glycation compounds or their metabolites in tissues or body fluids as well as their reaction products with amino acids, proteins or DNA may serve to monitor exposure to glycation compounds. However, since glycation compounds are also formed endogenously, these biomarkers reflect the totality of the exposure, making it inherently difficult to define the body burden due to dietary intake against the background of endogenous formation.Information on the toxicokinetics and toxicity of glycation compounds is scarce and mostly limited to the reactive dicarbonyl compounds GO, MGO, 3-DG, HMF, and individual glycated amino acids such as CML and CEL. Acute toxicity of dicarbonyl compounds is low to moderate. There are some data to suggest that rapid detoxification of dicarbonyls in the gastrointestinal tract and liver may limit their oral bioavailability. Biotransformation of GO and MGO occurs predominantly via the glutathione (GSH)-dependent glyoxalase system, and to a lesser extent via glutathione-independent aldo-keto-reductases, which are also responsible for biotransformation of 3-DG. GO, MGO and 3-DG readily react with DNA bases in vitro, giving rise to DNA adducts. There is clear evidence for genotoxicity of GO, MGO and 3-DG. Repeated dose toxicity studies on GO consistently reported reduced body weight gain concomitant with reduced food and water consumption but did not identify compound related changes in clinical chemistry and hematology or histopathological lesions. There is also no evidence for systemic carcinogenicity of GO and MGO based on the available studies. However, initiation/promotion studies indicate that oral exposure to GO may exhibit genotoxic and tumor promoting activity locally in the gastrointestinal tract. From a 2-year chronic toxicity and carcinogenicity study in rats, a NOAEL for systemic toxicity of GO administered via drinking water of 25 mg/kg bw was reported based on reduced body weight and erosions/ulcer in the glandular stomach. Other non-neoplastic and neoplastic lesions were not observed. Acute toxicity of HMF is also low. From a 90-day repeated dose toxicity study in mice, a NOAEL of 94 mg/kg bw was derived based on cytoplasmic alterations of proximal tubule epithelial cells of the kidney. HMF was mostly negative in in vitro genotoxicity tests, although positive findings for mutagenicity were obtained under conditions that promote formation of the chemically reactive sulfuric acid ester 5-sulfoxymethylfurfural. There is some evidence of carcinogenic activity of HMF in female B6C3F1 mice based on increased incidences of hepatocellular adenoma, but not in male mice and rats of both sexes. Although data on oral bioavailability of glycated amino acids are mostly limited to CML, it appears that glycated amino acids may be absorbed from the gastrointestinal tract after oral exposure to their free and protein bound form. Glycated amino acids that are not absorbed in the intestine may be subject to metabolism by the gut microbiome. Glycated amino acids present in the systemic circulation are rapidly eliminated via the urine. Acute oral toxicity of CML is low. Studies in mice and rats reported changes in clinical chemistry parameters indicative of impaired renal and hepatic function. However, these changes were not dose-related and not supported by histopathological evaluation.Previous risk assessments of individual glycation compounds did not identify a health concern at estimated human exposures (GO, HMF) but also noted the lack of data to draw firm conclusions on health risks associated with exposure to MGO.To identify potential associations between dietary intake of defined glycation compounds and disease a systematic review was carried out according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) model, applying the quality criteria previously defined by the SKLM. Using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet, a systematic search in Pubmed (Medline), Scopus and Web of Science was performed. Although the present systematic review identified numerous studies that investigated an association between an "AGE-rich diet" and adverse health effects, only a subset of studies was found to comply with the quality criteria defined by the SKLM and was thus considered suitable to assess potential health risks of dietary glycation compounds.For each adverse health effect considered in this assessment, only limited numbers of human studies were identified. Although studies in humans offer the advantage of investigating effects at relevant human exposures, these studies did not provide compelling evidence for adverse effects of dietary glycation compounds. Animal studies identified in this systematic review provide some evidence for induction of impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to GO and MGO as representatives of dicarbonyl compounds. Only limited evidence points to a link between high intake of glycated amino acids and metabolic disorders. However, these effects were typically reported to occur at dose levels that exceed human dietary exposure, often by several orders of magnitude. Unfortunately, most studies employed only one dose level, precluding characterization of dose-response and derivation of a point of departure for risk assessment. While in vitro studies provide some evidence for a potential mechanistic link between individual glycation compounds and presumed adverse health effects, the clinical and toxicological relevance of the in vitro findings is often limited by the use of high concentrations of glycation compounds that by far exceed human dietary exposure and by insufficient evidence for corresponding adverse effects in vivo. A key question that has not been adequately considered in most studies investigating systemic effects of glycation compounds is the extent of oral bioavailability of dietary glycation compounds, including the form in which MRPs may be taken up (e.g. free vs. peptide bound glycated amino acids). Understanding how much dietary glycation compounds really add to the significant endogenous background is critical to appraise the relevance of dietary MRPs for human health.While it appears mechanistically plausible that glycation of dietary allergens may affect their allergenic potential, the currently available data do not support the hypothesis that dietary glycation compounds may increase the risk for diet-induced allergies. There are no human studies addressing the immunological effects of dietary AGEs. Accordingly, there are no data on whether dietary AGEs promote the development of allergies, nor whether existing allergies are enhanced or attenuated. In numerous in vitro studies, the IgG/E binding ability of antigens and therefore their allergenic potential has been predominantly reported to be reduced by glycation. However, some in vitro studies showed that glycated proteins bind to receptors of immunological cells, and thus may have promoting effects on immune response and inflammation.Although experimental data from animal studies provide some evidence that high doses of individual glycation compounds such as MGO and protein-bound CML may produce certain adverse health effects, including diabetogenic, cardiovascular, metabolic and renal effects, the doses required to achieve these effects by far exceed human dietary exposures. Of note, in the only long-term study identified, a high dose of MGO administered via drinking water to mice for 18 months had no adverse effects on the kidneys, cardiovascular system, or development of diabetes.Experimental data from animal studies provide evidence that high doses of defined glycation compounds such as MGO or protein-bound CML may affect glucose homeostasis. However, the doses required to produce these effects markedly exceed human dietary exposure. Results from human studies are inconclusive: Three short-term intervention studies suggested that diets rich in AGEs may impair glucose homeostasis, whereas one recent intervention study and two observational studies failed to show such an effect.For the cardiovascular system, there is some evidence from in vitro and in vivo studies that high concentrations of MRPs, well above the dietary exposure of humans, may enhance inflammation in the cardiovascular system, induce endothelial damage, increase blood pressure and increase the risk of thrombosis. Only a limited number of human intervention studies investigated potential effects of short-term exposure and longer-term effects of glycation compounds on the cardiovascular system, and yielded inconsistent results. The few observational studies available either found no association between dietary MRP intake and cardiovascular function or even reported beneficial effects. Therefore, currently no definitive conclusion on potential acute and chronic effects of dietary MRPs on inflammation and cardiovascular function can be drawn. However, there is currently also no convincing evidence that potential adverse effects on the cardiovascular system are triggered by dietary MRP intake.Furthermore, human studies did not provide evidence for an adverse effect of dietary MRPs on kidney function. In animal studies with high levels of oral intake, MGO was reported to cause structural and functional effects in the kidney. Several studies show that the concentration of modified proteins and amino acids, such as CML, increases significantly in kidney tissue after oral intake. One study showed a negative effect of a high-temperature-treated diet containing increased CML concentrations on kidney structure integrity and impaired glomerular filtration. The causative relationship of accumulation of dietary MRPs and a functional decline of the kidneys, however, needs further confirmation.With regard to gut health, there is some evidence for alterations in gut microflora composition and the production of individual short-chain fatty acids (SCFAs) upon dietary exposure to glycation compounds. However, this has not been linked to adverse health effects in humans and may rather reflect adaptation of the gut microbiota to changing nutrients. In particular, a human observational study and several animal studies did not find a correlation between the intake of glycation compounds and increased intestinal inflammation. In animal studies, positive effects of glycation compounds on gut tissue damage and dysbiosis during colitis were described.Considering clear evidence for DNA reactivity and genotoxicity of the dicarbonyl compounds GO, MGO and 3-DG, it is plausible to suspect that dicarbonyl compounds may induce mutations and cancer. Although there is some evidence for tumor promoting activity of GO locally in the gastrointestinal tract, the only guideline-compatible chronic rodent bioassays reported erosions and ulcer in the glandular stomach but no treatment-related neoplastic lesions. A recent multinational cohort study with focus on CEL, CML, and MG-H1 found no evidence to support the hypothesis that dietary AGEs are linked to cancer risk.Evidence for an association between human exposure to dietary glycation compounds and detrimental effects on the brain and on cognitive performance is far from being compelling. No human studies fully complying with the defined quality criteria were identified. A few experimental studies reported neuroinflammation and cognitive impairment following dietary MRP exposure, but these can be considered indicative at best and do not support firm conclusions for human health. In addition to utilizing exceedingly high dosages of individual agents like CML, harsh processing conditions causing a multitude of major process-related changes do not allow to convincingly reconcile effects observed with measured/supposed contents of free and protein-bound CML alone.Overall, although dietary glycation compounds have been claimed to contribute to a wide range of adverse health effects, the present critical evaluation of the literature allows the conclusion that the available data are insufficient, inadequate or inconclusive and do not compellingly support the hypothesis of human health risks being related to the presence of glycation compounds in food. The study limitations detailed above, together with the fact that a large number of studies did not comply with the defined quality criteria and therefore had to be excluded highlight the importance of performing adequately designed human or animal studies to inform scientifically reliable health risk assessment.To achieve this, high quality, dependable scientific cooperation within various disciplines is pivotal.


Assuntos
Dieta , Animais , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/toxicidade , Reação de Maillard
3.
J Hum Evol ; 175: 103305, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586354

RESUMO

Herbivorous animals that regularly consume tannin-rich food are known to secrete certain tannin-binding salivary proteins (TBSPs), especially proline-rich proteins and histidine-rich proteins, as an effective measure to counteract the antinutritive effects of dietary tannins. Due to their high binding capacity, TBSPs complex with tannins in the oral cavity, and thereby protect dietary proteins and digestive enzymes. Although the natural diet of great apes (Hominidae) is biased toward ripe fruits, analyses of food plants revealed that their natural diet contains considerable amounts of tannins, which is raising the question of possible counter-measures to cope with dietary tannins. In our study, we investigated the salivary amino acid profiles of zoo-housed Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii, and compared their results with corresponding data from Homo sapiens. Individual saliva samples of 42 apes and 17 humans were collected and quantitated by amino acid analysis, using cation-exchange chromatography with postcolumn derivatization, following acid hydrolysis. We found species-specific differences in the salivary amino acid profiles with average total salivary protein concentration ranging from 308.8 mg/dL in Po. abelii to 1165.6 mg/dL in G. gorilla. Total salivary protein was consistently higher in ape than in human saliva samples (174 mg/dL). All apes had on average also higher relative proline levels than humans did. Histidine levels had the highest concentration in the samples from Po. abelii followed by P. paniscus. In all ape species, the high salivary concentrations of proline and histidine are considered to be indicative of high concentrations of TBSPs in hominids. Given that the species differences in salivary composition obtained in this study correspond with overall patterns of secondary compound content in the diet of wild populations, we assume that salivary composition is resilient to acute and long-lasting changes in diet composition in general and tannin content in particular.


Assuntos
Aminoácidos , Gorilla gorilla , Pan paniscus , Pan troglodytes , Pongo abelii , Animais , Humanos , Aminoácidos/análise , Gorilla gorilla/metabolismo , Histidina/análise , Pan paniscus/metabolismo , Pan troglodytes/metabolismo , Pongo abelii/metabolismo , Prolina/análise , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/análise , Taninos/análise , Taninos/metabolismo , Dieta
4.
Anal Bioanal Chem ; 415(13): 2493-2509, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36631574

RESUMO

Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS) is one the most powerful analytical platforms for chemical investigations of complex biological samples. It produces large datasets that are rich in information, but highly complex, and its consistency may be affected by random systemic fluctuations and/or changes in the experimental parameters. This study details the optimization of a data processing strategy that compensates for severe 2D pattern misalignments and detector response fluctuations for saliva samples analyzed across 2 years. The strategy was trained on two batches: one with samples from healthy subjects who had undergone dietary intervention with high/low-Maillard reaction products (dataset A), and the second from healthy/unhealthy obese individuals (dataset B). The combined untargeted and targeted pattern recognition algorithm (i.e., UT fingerprinting) was tuned for key process parameters, the signal-to-noise ratio (S/N), and MS spectrum similarity thresholds, and then tested for the best transform function (global or local, affine or low-degree polynomial) for pattern realignment in the temporal domain. Reliable peak detection achieved its best performance, computed as % of false negative/positive matches, with a S/N threshold of 50 and spectral similarity direct match factor (DMF) of 700. Cross-alignment of bi-dimensional (2D) peaks in the temporal domain was fully effective with a supervised operation including multiple centroids (reference peaks) and a match-and-transform strategy using affine functions. Regarding the performance-derived response fluctuations, the most promising strategy for cross-comparative analysis and data fusion included the mass spectral total useful signal (MSTUS) approach followed by Z-score normalization on the resulting matrix.


Assuntos
Metaboloma , Saliva , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Algoritmos
5.
Mol Microbiol ; 115(2): 175-190, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979851

RESUMO

Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.


Assuntos
Lisina/análogos & derivados , Sequência de Aminoácidos/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Choque Térmico/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
6.
Environ Microbiol ; 24(7): 3229-3241, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621031

RESUMO

Thermal food processing leads to the formation of advanced glycation end products (AGE) such as Nε -carboxymethyllysine (CML). Accordingly, these non-canonical amino acids are an important part of the human diet. However, CML is only partially decomposed by our gut microbiota and up to 30% are excreted via faeces and, hence, enter the environment. In frame of this study, we isolated a soil bacterium that can grow on CML as well as its higher homologue Nε -carboxyethyllysine (CEL) as sole source of carbon. Bioinformatic analyses upon whole-genome sequencing revealed a subspecies of Pseudomonas asiatica, which we named 'bavariensis'. We performed a metabolite screening of P. asiatica subsp. bavariensis str. JM1 grown either on CML or CEL and identified N-carboxymethylaminopentanoic acid and N-carboxyethylaminopentanoic acid respectively. We further detected α-aminoadipate as intermediate in the metabolism of CML. These reaction products suggest two routes of degradation: While CEL seems to be predominantly processed from the α-C-atom, decomposition of CML can also be initiated with cleavage of the carboxymethyl group and under the release of acetate. Thus, our study provides novel insights into the metabolism of two important AGEs and how these are processed by environmental bacteria.


Assuntos
Produtos Finais de Glicação Avançada , Solo , Bactérias/metabolismo , Manipulação de Alimentos , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Pseudomonas
7.
Arch Toxicol ; 96(6): 1905-1914, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504979

RESUMO

Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity. Salivary excretion may also occur with certain drug molecules and food constituents and their metabolites. Therefore, putative combination effects in the oral cavity and the upper digestive tract may occur, but this has remained largely unexplored up to now. In this Guest Editorial, published evidence on exposure levels and biokinetics of nitrate/nitrite/NOx, NOC and acetaldehyde in the organism is reviewed and knowledge gaps concerning combination effects are identified. Research is suggested to be initiated to study the related unresolved issues.


Assuntos
Nitritos , Trato Gastrointestinal Superior , Acetaldeído/metabolismo , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Compostos Nitrosos/metabolismo , Saliva/metabolismo , Trato Gastrointestinal Superior/metabolismo
8.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293093

RESUMO

Cholesterol and its oxidized forms, oxysterols, are ingested from foods and are synthesized de novo. Cholesterol and oxysterols influence molecular and cellular events and subsequent biological responses of immune cells. The amount of dietary cholesterol influence on the levels of LDL cholesterol and blood oxysterols plays a significant role in the induction of pro-inflammatory state in immune cells, leading to inflammatory disorders, including cardiovascular disease. Cholesterol and oxysterols synthesized de novo in immune cells and stroma cells are involved in immune homeostasis, which may also be influenced by an excess intake of dietary cholesterol. Dietary compounds such as ß-glucan, plant sterols/stanols, omega-3 lipids, polyphenols, and soy proteins, could lower blood cholesterol levels by interfering with cholesterol absorption and metabolism. Such dietary compounds also have potential to exert immune modulation through diverse mechanisms. This review addresses current knowledge about the impact of dietary-derived and de novo synthesized cholesterol and oxysterols on the immune system. Possible immunomodulatory mechanisms elicited by cholesterol-lowering dietary compounds are also discussed.


Assuntos
Oxisteróis , Fitosteróis , beta-Glucanas , LDL-Colesterol , Proteínas de Soja , Polifenóis , Colesterol na Dieta , Colesterol/metabolismo , Fitosteróis/farmacologia , Sistema Imunitário/metabolismo
9.
Arch Toxicol ; 95(7): 2571-2587, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34095968

RESUMO

Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.


Assuntos
Água Potável , Fluoretos , Animais , Estudos Epidemiológicos , Europa (Continente) , Fluoretos/toxicidade , Estudos Longitudinais
10.
Eur J Nutr ; 59(3): 1135-1147, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31053882

RESUMO

PURPOSE: The tryptophan-containing dipeptides isoleucine-tryptophan (IW) and tryptophan-leucine (WL) are angiotensin-converting enzyme (ACE)-inhibitors in vitro. These peptides are released by enzymatic hydrolysis of bovine whey protein. To exhibit ACE inhibition in vivo, peptides need to be absorbed into the circulatory system. This study aimed to determine the in vivo ACE-inhibitory potency of a whey protein hydrolysate (MPH), containing IW and WL, and to quantify plasma concentrations of these peptides after oral administration of MPH in healthy volunteers. Additionally, changes in blood pressure were investigated. RESULTS: After intake of 5 and 50 g MPH, plasma ACE activity was reduced to 86.4 ± 5.9 and 75.1 ± 6.9% of baseline activity, respectively. Although a clear ACE inhibition was measured, no effect on blood pressure was seen. Basal plasma concentrations of the tryptophan-containing dipeptides were 2.8 ± 0.7 nM for IW and 10.1 ± 1.8 nM for WL. After intake of 5-50 g MPH, peptide concentrations were dose dependently elevated to values between 12.5 ± 8.4 and 99.1 ± 58.7 nM for IW and 15.0 ± 4.3-34.9 ± 19.4 nM for WL. Administration of intact whey protein showed a minor ACE inhibition, probably caused by release of inhibitory peptides during gastrointestinal digestion. The increase of WL in plasma after intake of intact protein was similar to that determined after intake of MPH. In contrast, resulting IW concentrations were much lower after intake of intact whey protein when compared to MPH administration. CONCLUSION: After intake of MPH, plasma ACE activity decreased in parallel to the increase of IW and WL plasma concentrations. However, the resulting peptide concentrations cannot fully explain the reduction of ACE activity in plasma with a direct enzyme inhibition. Therefore, this study points to a gap in the understanding of the inhibitory action of these peptides in vivo. Thus, to further develop innovative food additives with ACE activity diminishing capabilities, it appears mandatory to better characterize the mode of action of these peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Hidrolisados de Proteína/farmacologia , Triptofano/sangue , Triptofano/farmacologia , Proteínas do Soro do Leite/sangue , Proteínas do Soro do Leite/farmacologia , Adulto , Inibidores da Enzima Conversora de Angiotensina/sangue , Pressão Sanguínea/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Hidrolisados de Proteína/sangue , Valores de Referência , Método Simples-Cego
11.
Arch Toxicol ; 94(5): 1375-1415, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32382957

RESUMO

Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Fluoretos/toxicidade , Síndromes Neurotóxicas/epidemiologia , Experimentação Animal , Animais , Arsênio , Criança , Água Potável , Estudos Epidemiológicos , Europa (Continente) , Feminino , Humanos , Compostos de Metilmercúrio , Nível de Efeito Adverso não Observado
12.
Semin Cancer Biol ; 49: 1-8, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29174601

RESUMO

Reactive 1,2-dicarbonyl compounds (DCs) are generated from carbohydrates during food processing and storage and under physiological conditions. In the recent decades, much knowledge has been gained concerning the chemical formation pathways and the role of DCs in food and physiological systems. DCs are formed mainly by dehydration and redox reactions and have a strong impact on the palatability of food, because they participate in aroma and color formation. However, they are precursors of advanced glycation end products (AGEs), and cytotoxic effects of several DCs have been reported. The most abundant DCs in food are 3-deoxyglucosone, 3-deoxygalactosone, and glucosone, predominating over methylglyoxal, glyoxal, and 3,4-dideoxyglucosone-3-ene. The availability for absorption of individual DCs is influenced by the release from the food matrix during digestion and by their reactivity towards constituents of intestinal fluids. Some recent works suggest formation of DCs from dietary sugars after their absorption, and others indicate that certain food constituents may scavenge endogenously formed DCs. First works on the interplay between dietary DCs and diseases reveal an ambiguous role of the compounds. Cancer-promoting but also anticancer effects were ascribed to methylglyoxal. Further work is still needed to elucidate the reactions of DCs during intestinal digestion and pathophysiological effects of dietary DCs at doses taken up with food and in "real" food matrices in disease states such as diabetes, uremia, and cancer.


Assuntos
Carboidratos/química , Exposição Dietética/efeitos adversos , Alimentos , Estresse Oxidativo , Desoxiglucose/análogos & derivados , Desoxiglucose/química , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Galactose/análogos & derivados , Galactose/química , Galactose/farmacologia , Glioxal/química , Glioxal/metabolismo , Glioxal/farmacologia , Humanos , Cetoses/química , Cetoses/metabolismo , Cetoses/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
13.
Hum Brain Mapp ; 40(6): 1844-1855, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30585373

RESUMO

It has been shown that the functional architecture of the default mode network (DMN) can be affected by serotonergic challenges and these effects may provide insights on the neurobiological bases of depressive symptomatology. To deepen our understanding of this possible interplay, we used a double-blind, randomized, cross-over design, with a control condition and two interventions to decrease (tryptophan depletion) and increase (tryptophan loading) brain serotonin synthesis. Resting-state fMRI from 85 healthy subjects was acquired for all conditions 3 hr after the ingestion of an amino acid mixture containing different amounts of tryptophan, the dietary precursor of serotonin. The DMN was derived for each participant and session. Permutation testing was performed to detect connectivity changes within the DMN as well as between the DMN and other brain regions elicited by the interventions. We found that tryptophan loading increased tryptophan plasma levels and decreased DMN connectivity with visual cortices and several brain regions involved in emotion and affect regulation (i.e., putamen, subcallosal cortex, thalamus, and frontal cortex). Tryptophan depletion significantly reduced tryptophan levels but did not affect brain connectivity. Subjective ratings of mood, anxiety, sleepiness, and impulsive choice were not strongly affected by any intervention. Our data indicate that connectivity between the DMN and emotion-related brain regions might be modulated by changes in the serotonergic system. These results suggest that functional changes in the brain associated with different brain serotonin levels may be relevant to understand the neural bases of depressive symptoms.


Assuntos
Encéfalo/efeitos dos fármacos , Emoções/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Triptofano/administração & dosagem , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico , Estudos Cross-Over , Método Duplo-Cego , Emoções/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Adulto Jovem
14.
Langmuir ; 35(30): 9721-9731, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31280571

RESUMO

Bioactive peptides, such as isoleucyl-tryptophan (IW), exhibit a high potential to inhibit the angiotensin-converting enzyme (ACE). Adsorption on carbon materials provides a beneficial method to extract these specific molecules from the complex mixture of an α-lactalbumin hydrolysate. This study focuses on the impact of nitrogen functionalization of porous carbon adsorbents, either via pre- or post-treatment, on the adsorption behavior of the ACE-inhibiting peptide IW and the essential amino acid tryptophan (W). The commercially activated carbon Norit ROX 0.8 is compared with pre- and postsynthetically functionalized N-doped carbon in terms of surface area, pore size, and surface functionality. For prefunctionalization, a covalent triazine framework was synthesized by trimerization of an aromatic nitrile under ionothermal conditions. For the postsynthetic approach, the activated carbon ROX 0.8 was functionalized with the nitrogen-rich molecule melamine. The batch adsorption results using model mixtures containing the single components IW and W could be transferred to a more complex mixture of an α-lactalbumin hydrolysate containing a huge number of various peptides. For this purpose, reverse-phase high-pressure liquid chromatography with fluorescence detection was used for identification and quantification. The treatment with the three different carbon materials leads to an increase in the ACE-inhibiting effect in vitro. The modified surface structure of the carbon via pre- or post-treatment allows separation of IW and W due to the certain selectivity for either the amino acid or the dipeptide.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Carbono/química , Nitrogênio/química , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Adsorção , Hidrólise , Lactalbumina/metabolismo , Porosidade , Triptofano/química
15.
Inorg Chem ; 58(7): 4173-4189, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860361

RESUMO

Hexavalent uranium is ubiquitous in the environment. In view of the chemical and radiochemical toxicity of uranium(VI), a good knowledge of its possible interactions in the environment is crucial. The aim of this work was to identify typical binding and sorption characteristics of uranium(VI) with both the pure bovine milk protein ß-casein and diverse related protein mixtures (caseins, whey proteins). For comparison, selected model peptides representing the amino acid sequence 13-16 of ß-casein and dephosphorylated ß-casein were also studied. Complexation studies using potentiometric titration and time-resolved laser-induced fluorescence spectroscopy revealed that the phosphoryl-containing proteins form uranium(VI) complexes of higher stability than the structure-analog phosphoryl-free proteins. That is in agreement with the sorption experiments showing a significantly higher affinity of caseins toward uranium(VI) in comparison to whey proteins. On the other hand, the total sorption capacity of caseins is lower than that of whey proteins. The discussed binding behavior of milk proteins to uranium(VI) might open up interesting perspectives for sustainable techniques of uranium(VI) removal from aqueous solutions. This was further demonstrated by batch experiments on the removal of uranium(VI) from mineral water samples.


Assuntos
Caseínas/metabolismo , Peptídeos/metabolismo , Urânio/metabolismo , Proteínas do Soro do Leite/metabolismo , Adsorção , Animais , Caseínas/química , Bovinos , Complexos de Coordenação/química , Estrutura Molecular , Nascentes Naturais/química , Peptídeos/química , Ligação Proteica , Urânio/química , Proteínas do Soro do Leite/química
16.
Curr Allergy Asthma Rep ; 19(1): 4, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30689122

RESUMO

PURPOSE OF REVIEW: The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and compounds with free amino groups such as proteins and takes place during thermal processing and storage of foods. This review aims to discuss potential effects of dietary MR products on the pathological mechanisms of allergic diseases. RECENT FINDINGS: Since the MR leads to modification of proteins with various types of glycation structures, the impact of the MR on the immunogenicity and potential allergenicity of food proteins in many allergenic foods has been assessed. In addition, recent studies have suggested that the MR products, in particular "advanced glycation end products (AGEs)," contained in the diet may be involved in the development of chronic inflammation by acting as inflammatory components and affecting the gut microbiome. This review found that the biological, immunological, and allergic properties of dietary MR products are diverse due to the complexity of the MR.


Assuntos
Alérgenos/química , Hipersensibilidade Alimentar/imunologia , Microbioma Gastrointestinal/imunologia , Produtos Finais de Glicação Avançada/imunologia , Inflamação/imunologia , Reação de Maillard , Humanos
18.
Chembiochem ; 18(3): 266-275, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27900834

RESUMO

The yeast Saccharomyces cerevisiae transforms branched-chain and aromatic amino acids into higher alcohols in the Ehrlich pathway. During microbiological culturing and industrial fermentations, this yeast is confronted with amino acids modified by reducing sugars in the Maillard reaction (glycation). In order to gain some preliminary insight into the physiological "handling" of glycated amino acids by yeasts, individual Maillard reaction products (MRPs: fructosyllysine, carboxymethyllysine, pyrraline, formyline, maltosine, methylglyoxal-derived hydroimidazolone) were administered to two strains of S. cerevisiae in a rich medium. Only formyline was converted into the corresponding α-hydroxy acid, to a small extent (10 %). Dipeptide-bound pyrraline and maltosine were removed from the medium with concomitant emergence of several metabolites. Pyrraline was mainly converted into the corresponding Ehrlich alcohol (20-60 %) and maltosine into the corresponding α-hydroxy acid (40-60 %). Five specific metabolites of glycated amino acids were synthesized and characterized. We show for the first time that S. cerevisiae can use glycated amino acids as a nitrogen source and transform them into new metabolites, provided that the substances can be transported across the cell membrane.


Assuntos
Aminoácidos/metabolismo , Dipeptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Dipeptídeos/química , Glicosilação , Reação de Maillard , Norleucina/análogos & derivados , Norleucina/análise , Norleucina/metabolismo , Estabilidade Proteica , Piridonas/análise , Piridonas/metabolismo , Pirróis/análise , Pirróis/metabolismo , Espectrofotometria Infravermelho , Espectrometria de Massas em Tandem
19.
Pathophysiology ; 23(3): 191-202, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27339176

RESUMO

Alligator pepper [Aframomum melegueta Roscoe K. (Zingiberaceae)] seeds have been reportedly used in folkloric medicine in the management of hypercholesterolemia and hypertension with limited scientific basis for their action. This study was conducted to characterize the amino acids in Alligator pepper seeds (APS), assess their effects on lipid profile and enzyme linked to blood pressure regulation in hypercholesterolemic rat (rats fed 2% cholesterol diet) model. Free and total amino acids of APS were extracted and their various constituents were analyzed using the amino acid analyzer and ultra-performance liquid chromatography. The effect of dietary inclusion of APS (2-4%) on the lipid profile, angiotensin I-enzyme (ACE) activity and antioxidant status in hypercholesterolemic rats (HCR) for 30days was assessed. The results suggest that APS may modulate blood lipid profile, ameliorate blood pressure, attenuate hepatotoxicity and exert antihypercholesterolemic effect. γ - amino butyric acid (GABA), tyrosine, phenylalanine and tryptophan that were subsequently detected in APS. The observed salutary effects of APS may be attributed to the synergistic or/and additive actions of the amino acids present with other antioxidant phytoconstituents. These findings may therefore provide pharmacological basis for APS use in the treatment of hypercholesterolemia, hyperlipidemia and hypertension.

20.
J Biol Chem ; 289(11): 7919-28, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24505139

RESUMO

The Maillard reaction (also referred to as "glycation") takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects. Here, we aimed to identify specific glycation structure(s) that could influence the T-cell immunogenicity and potential allergenicity of food allergens, using ovalbumin (OVA, an egg white allergen) as a model allergen. OVA was specifically modified with representative glycation structures: N(ε)-carboxymethyl lysine (CM-OVA), N(ε)-carboxyethyl lysine (CE-OVA), pyrraline (Pyr-OVA), or methylglyoxal-derived arginine derivatives (MGO-OVA). As well as AGE-OVA, a crude glycation product in thermal incubation of OVA with glucose, only Pyr-OVA, and not other modified OVAs, was efficiently taken up by bone marrow-derived murine dendritic cells (BMDCs). The uptake of Pyr-OVA was reduced in scavenger receptor class A (SR-A)-deficient BMDCs, but not in cells treated with inhibitors of scavenger receptor class B, galectin-3, or blocking antibodies against CD36, suggesting that pyrraline binds to SR-A. Compared with other modified OVAs, Pyr-OVA induced higher activation of OVA-specific CD4(+) T-cells in co-culture with BMDCs. Furthermore, compared with native OVA, AGE-OVA and Pyr-OVA induced higher IgE production in mice. Pyrraline could induce better allergen uptake by DCs via association with SR-A and subsequently enhance CD4(+) T-cell activation and IgE production. Our findings help us to understand how Maillard reaction enhances the potential allergenicity of food allergens.


Assuntos
Alérgenos/química , Linfócitos T CD4-Positivos/citologia , Hipersensibilidade Alimentar/imunologia , Norleucina/análogos & derivados , Ovalbumina/química , Pirróis/química , Animais , Células da Medula Óssea/citologia , Carboidratos/química , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Ativação Linfocitária , Reação de Maillard , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Norleucina/química , Estrutura Secundária de Proteína , Receptores Depuradores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA