Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Bioconjug Chem ; 34(12): 2375-2386, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079189

RESUMO

Nanocarriers have shown their ability to extend the circulation time of drugs, enhance tumor uptake, and tune drug release. Therapeutic peptides are a class of drug compounds in which nanocarrier-mediated delivery can potentially improve their therapeutic index. To this end, there is an urgent need for orthogonal covalent linker chemistry facilitating the straightforward on-the-resin peptide generation, nanocarrier conjugation, as well as the triggered release of the peptide in its native state. Here, we present a copper-free clickable ring-strained alkyne linker conjugated to the N-terminus of oncolytic peptide LTX-315 via standard solid-phase peptide synthesis (SPPS). The linker contains (1) a recently developed seven-membered ring-strained alkyne, 3,3,6,6-tetramethylthiacycloheptyne sulfoximine (TMTHSI), (2) a disulfide bond, which is sensitive to the reducing cytosolic and tumor environment, and (3) a thiobenzyl carbamate spacer enabling release of the native peptide upon cleavage of the disulfide via 1,6-elimination. We demonstrate convenient "clicking" of the hydrophilic linker-peptide conjugate to preformed pegylated core-cross-linked polymeric micelles (CCPMs) of 50 nm containing azides in the hydrophobic core under aqueous conditions at room temperature resulting in a loading capacity of 8 mass % of peptide to polymer (56% loading efficiency). This entrapment of hydrophilic cargo into/to a cross-linked hydrophobic core is a new and counterintuitive approach for this class of nanocarriers. The release of LTX-315 from the CCPMs was investigated in vitro and rapid release upon exposure to glutathione (within minutes) followed by slower 1,6-elimination (within an hour) resulted in the formation of the native peptide. Finally, cytotoxicity of LTX CCPMs as well as uptake of sulfocyanine 5-loaded CCPMs was investigated by cell culture, demonstrating successful tumor cell killing at concentrations similar to that of the free peptide treatment.


Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Portadores de Fármacos/química , Peptídeos/uso terapêutico , Micelas , Polímeros/química , Neoplasias/tratamento farmacológico , Oxirredução , Alcinos/química , Dissulfetos/química
2.
Mol Pharm ; 20(11): 5515-5531, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37811785

RESUMO

Ovarian cancer is one of the most lethal gynecological cancers in the world. In recent years, nucleic acid (NA)-based formulations have been shown to be promising treatments for ovarian cancer, including tumor nodules. However, gene therapy is not that far advanced in clinical reality due to unfavorable physicochemical properties of the NAs, such as high molecular weight, poor cellular uptake, rapid degradation by nucleases, etc. One of the strategies used to overcome these drawbacks is the complexation of anionic NAs via electrostatic interactions with cationic polymers, resulting in the formation of so-called polyplexes. In this work, the role of the size of pDNA and siRNA polyplexes on their penetration into ovarian-cancer-based tumor spheroids was investigated. For this, a methoxypoly(ethylene glycol) poly(2-(dimethylamino)ethyl methacrylate) (mPEG-pDMAEMA) diblock copolymer was synthesized as a polymeric carrier for NA binding and condensation with either plasmid DNA (pDNA) or short interfering RNA (siRNA). When prepared in HEPES buffer (10 mM, pH 7.4) at a nitrogen/phosphate (N/P) charge ratio of 5 and pDNA polyplexes were formed with a size of 162 ± 11 nm, while siRNA-based polyplexes displayed a size of 25 ± 2 nm. The polyplexes had a slightly positive zeta potential of +7-8 mV in the same buffer. SiRNA and pDNA polyplexes were tracked in vitro into tumor spheroids, resembling in vivo avascular ovarian tumor nodules. For this purpose, reproducible spheroids were obtained by coculturing ovarian carcinoma cells with primary mouse embryonic fibroblasts in different ratios (5:2, 1:1, and 2:5). Penetration studies revealed that after 24 h of incubation, siRNA polyplexes were able to penetrate deeper into the homospheroids (composed of only cancer cells) and heterospheroids (cancer cells cocultured with fibroblasts) compared to pDNA polyplexes which were mainly located in the rim. The penetration of the polyplexes was slowed when increasing the fraction of fibroblasts present in the spheroids. Furthermore, in the presence of serum siRNA polyplexes encoding for luciferase showed a high cellular uptake in 2D cells resulting in ∼50% silencing of luciferase expression. Taken together, these findings show that self-assembled small siRNA polyplexes have good potential as a platform to test ovarian tumor nodulus penetration..


Assuntos
Fibroblastos , Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Polímeros/química , DNA/química , RNA Interferente Pequeno/química , Neoplasias Ovarianas/terapia , Luciferases
3.
Langmuir ; 39(34): 12132-12143, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581242

RESUMO

Core-crosslinked polymeric micelles (CCPMs) are an attractive class of nanocarriers for drug delivery. Two crosslinking approaches to form CCPMs exist: either via a low-molecular-weight crosslinking agent to connect homogeneous polymer chains with reactive handles or via cross-reactive handles on polymers to link them to each other (complementary polymers). Previously, CCPMs based on methoxy poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-PHPMAmLacn) modified with thioesters were crosslinked via native chemical ligation (NCL, a reaction between a cysteine residue and thioester resulting in an amide bond) using a bifunctional cysteine containing crosslinker. These CCPMs are degradable under physiological conditions due to hydrolysis of the ester groups present in the crosslinks. The rapid onset of degradation observed previously, as measured by the light scattering intensity, questions the effectiveness of crosslinking via a bifunctional agent. Particularly due to the possibility of intrachain crosslinks that can occur using such a small crosslinker, we investigated the degradation mechanism of CCPMs generated via both approaches using various analytical techniques. CCPMs based on complementary polymers degraded slower at pH 7.4 and 37 °C than CCPMs with a crosslinker (the half-life of the light scattering intensity was approximately 170 h versus 80 h, respectively). Through comparative analysis of the degradation profiles of the two different CCPMs, we conclude that partially ineffective intrachain crosslinks are likely formed using the small crosslinker, which contributed to more rapid CCPM degradation. Overall, this study shows that the type of crosslinking approach can significantly affect degradation kinetics, and this should be taken into consideration when developing new degradable CCPM platforms.


Assuntos
Cisteína , Micelas , Polímeros/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Hidrólise
4.
Biomacromolecules ; 24(10): 4385-4396, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36044412

RESUMO

Polymeric micelles (PMs) are promising platforms for enhanced tissue targeting of entrapped therapeutic agents. Strategies to circumvent premature release of entrapped drugs include cross-linking of the micellar core as well as covalent attachment of the drug cargo. The chemistry employed to obtain cross-linked micelles needs to be mild to also allow entrapment of fragile molecules, such as certain peptides, proteins, oligonucleotides, and fluorescent dyes. Native chemical ligation (NCL) is a mild bio-orthogonal reaction between a N-terminal cysteine residue and a thioester that proceeds under physiological conditions. Here, we designed a trifunctional cross-linker containing two cysteine residues for the micelle core-cross-linking reaction and an azide residue for ring-strained alkyne conjugation of fluorescent dyes. We applied this approach to thermosensitive methoxypolyethylene glycol-b-N-(2-hydroxypropyl)methacrylamide-lactate (mPEG-b-HPMAmLacn) based block copolymers of a core-cross-linked polymeric micelle (CCPM) system by attaching thioester residues (using ethyl thioglycolate-succinic anhydride, ETSA) for NCL cross-linking with the trifunctional cross-linker under physiological conditions. By use of mild copper-free click chemistry, we coupled fluorescent dyes, Sulfo.Cy5 and BODIPY, to the core via the azide residue present on the cross-linker by triazole ring formation. In addition, we employed a recently developed cycloheptyne strain promoted click reagent (TMTHSI, CliCr) in comparison to the frequently employed cyclooctyne derivative (DBCO), both achieving successful dye entrapment. The size of the resulting CCPMs could be tuned between 50 and 100 nm by varying the molecular weight of the thermosensitive block and ETSA content. In vitro cell experiments showed successful internalization of the dye entrapped CCPMs, which did not affect cell viability up to a polymer concentration of 2 mg/mL in PC3 cells. These fluorescent dye entrapped CCPMs can be applied in diagnostic imaging and the chemistry developed in this study serves as a steppingstone toward covalently entrapped fragile drug compounds with tunable release in CCPMs.


Assuntos
Corantes Fluorescentes , Micelas , Corantes Fluorescentes/química , Azidas , Cisteína , Polímeros/química , Polietilenoglicóis/química
5.
Clin Exp Allergy ; 52(1): 137-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145667

RESUMO

BACKGROUND: Two to four percentage of infants are affected by cow's milk allergy (CMA), which persists in 20% of cases. Intervention approaches using early oral exposure to cow's milk protein or hydrolysed cow's milk formula are being studied for CMA prevention. Yet, concerns regarding safety and/or efficacy remain to be tackled in particular for high-risk non-exclusively breastfed infants. Therefore, safe and effective strategies to improve early life oral tolerance induction may be considered. OBJECTIVE: We aim to investigate the efficacy of CMA prevention using oral pre-exposure of two selected 18-AA ß-lactoglobulin-derived peptides loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in a whey-protein induced CMA murine model. METHODS: The peptides were loaded in PLGA NPs via a double emulsion solvent evaporation technique. In vivo, 3-week-old female C3H/HeOuJ mice received 6 daily gavages with PBS, whey, Peptide-mix, a high- or low-dose Peptide-NPs or empty-NP plus Peptide-mix, prior to 5 weekly oral sensitizations with cholera toxin plus whey or PBS (sham). One week after the last sensitization, the challenge induced acute allergic skin response, anaphylactic shock score, allergen-specific serum immunoglobulins and ex vivo whey-stimulated cytokine release by splenocytes was measured. RESULTS: Mice pre-treated with high-dose Peptide-NPs but not low-dose or empty-NP plus Peptide-mix, were protected from anaphylaxis and showed a significantly lower acute allergic skin response upon intradermal whey challenge compared to whey-sensitized mice. Compared with the Peptide-mix or empty-NP plus Peptide-mix pre-treatment, the high-dose Peptide-NPs-pre-treatment inhibited ex vivo whey-stimulated pro-inflammatory cytokine TNF-α release by splenocytes. CONCLUSION & CLINICAL RELEVANCE: Oral pre-exposure of mice to two ß-lactoglobulin-derived peptides loaded PLGA NPs induced a dose-related partial prevention of CMA symptoms upon challenge to whole whey protein and silenced whey-specific systemic immune response. These findings encourage further development of the concept of peptide-loaded PLGA NPs for CMA prevention towards clinical application.


Assuntos
Hipersensibilidade a Leite , Nanopartículas , Animais , Bovinos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lactoglobulinas , Camundongos , Camundongos Endogâmicos C3H , Proteínas do Leite , Soro do Leite/metabolismo , Proteínas do Soro do Leite
6.
Bioconjug Chem ; 33(9): 1707-1715, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35979909

RESUMO

Core-cross-linked polymeric micelles (CCPMs) are a promising nanoparticle platform due to favorable properties such as their long circulation and tumor disposition exploiting the enhanced permeability and retention (EPR) effect. Sustained release of covalently linked drugs from the hydrophobic core of the CCPM can be achieved by a biodegradable linker that connects the drug and the core. This study investigates the suitability of trityl-based linkers for the design of acid-triggered native active pharmaceutical ingredient (API) release from CCPMs. Trityl linker derivatives with different substituent patterns were synthesized and conjugated to model API compounds such as DMXAA-amine, doxorubicin, and gemcitabine, and their release kinetics were studied. Hereafter, API release from CCPMs based on mPEG-b-pHPMAmLac block copolymers was investigated. Variation of the trityl substitution pattern showed tunability of the API release rate from the trityl-based linker with t1/2 varying from <1.0 to 5.0 h at pH 5.0 and t1/2 from 6.5 to >24 h at pH 7.4, all at 37 °C. A clear difference in release kinetics was found between gemcitabine and doxorubicin, with gemcitabine showing no detectable release for 72 h at pH 5.0 and doxorubicin showing a t1/2 of less than 1 h. Based on these findings, we show that the reaction mechanism of trityl deprotection plays an important role in the API release kinetics. The first step in this mechanism, which is protonation of the trityl-bound amine, is pKa-dependent, which explains the difference in release rate. In conclusion, acid-sensitive and tunable trityl linkers are highly promising for the design of linker-API conjugates and for their use in CCPMs.


Assuntos
Doxorrubicina , Micelas , Aminas , Preparações de Ação Retardada/química , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Polímeros/química
7.
Mol Pharm ; 19(9): 3057-3074, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35973068

RESUMO

Curcumin nanoformulations for intravenous injection have been developed to offset poor absorption, biotransformation, degradation, and excessive clearance associated with parenteral delivery. This review investigates (1) whether intravenous nanoformulations improve curcumin pharmacokinetics (PK) and (2) whether improved PK yields greater therapeutic efficacy. Standard PK parameters (measured maximum concentration [Cmax], area under the curve [AUC], distribution volume [Vd], and clearance [CL]) of intravenously administered free curcumin in mice and rats were sourced from literature and compared to curcumin formulated in nanoparticles, micelles, and liposomes. The studies that also featured analysis of pharmacodynamics (PD) in murine cancer models were used to determine whether improved PK of nanoencapsulated curcumin resulted in improved PD. The distribution and clearance of free and nanoformulated curcumin were very fast, typically accounting for >80% curcumin elimination from plasma within 60 min. Case-matched analysis demonstrated that curcumin nanoencapsulation generally improved curcumin PK in terms of measured Cmax (n = 27) and AUC (n = 33), and to a lesser extent Vd and CL. However, when the data were unpaired and clustered for comparative analysis, only 5 out of the 12 analyzed nanoformulations maintained a higher relative curcumin concentration in plasma over time compared to free curcumin. Quantitative analysis of the mean plasma concentration of free curcumin versus nanoformulated curcumin did not reveal an overall marked improvement in curcumin PK. No correlation was found between PK and PD, suggesting that augmentation of the systemic presence of curcumin does not necessarily lead to greater therapeutic efficacy.


Assuntos
Curcumina , Animais , Área Sob a Curva , Lipossomos , Camundongos , Micelas , Sistemas de Liberação de Fármacos por Nanopartículas , Ratos
8.
Biomacromolecules ; 23(7): 2914-2929, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35735135

RESUMO

Retinal diseases are the leading cause of visual impairment worldwide. The effectiveness of antibodies for the treatment of retinal diseases has been demonstrated. Despite the clinical success, achieving sufficiently high concentrations of these protein therapeutics at the target tissue for an extended period is challenging. Patients suffering from macular degeneration often receive injections once per month. Therefore, there is a growing need for suitable systems that can help reduce the number of injections and adverse effects while improving patient complacency. This study systematically characterized degradable "in situ" forming hydrogels that can be easily injected into the vitreous cavity using a small needle (29G). After intravitreal injection, the formulation is designed to undergo a sol-gel phase transition at the administration site to obtain an intraocular depot system for long-term sustained release of bioactives. A Diels-Alder reaction was exploited to crosslink hyaluronic acid-bearing furan groups (HAFU) with 4 arm-PEG10K-maleimide (4APM), yielding stable hydrogels. Here, a systematic investigation of the effects of polymer composition and the ratio between functional groups on the physicochemical properties of hydrogels was performed to select the most suitable formulation for protein delivery. Rheological analysis showed rapid hydrogel formation, with the fastest gel formation within 5 min after mixing the hydrogel precursors. In this study, the mechanical properties of an ex vivo intravitreally formed hydrogel were investigated and compared to the in vitro fabricated samples. Swelling and degradation studies showed that the hydrogels are biodegradable by the retro-Diels-Alder reaction under physiological conditions. The 4APM-HAFU (ratio 1:5) hydrogel formulation showed sustained release of bevacizumab > 400 days by a combination of diffusion, swelling, and degradation. A bioassay showed that the released bevacizumab remained bioactive. The hydrogel platform described in this study offers high potential for the sustained release of therapeutic antibodies to treat ocular diseases.


Assuntos
Hidrogéis , Doenças Retinianas , Bevacizumab/química , Preparações de Ação Retardada/química , Humanos , Ácido Hialurônico/química , Hidrogéis/química
9.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499301

RESUMO

Nanoparticles (NPs) are commonly modified with tumor-targeting moieties that recognize proteins overexpressed on the extracellular membrane to increase their specific interaction with target cells. Nanobodies (Nbs), the variable domain of heavy chain-only antibodies, are a robust targeting ligand due to their small size, superior stability, and strong binding affinity. For the clinical translation of targeted Nb-NPs, it is essential to understand how the number of Nbs per NP impacts the receptor recognition on cells. To study this, Nbs targeting the hepatocyte growth factor receptor (MET-Nbs) were conjugated to PEGylated liposomes at a density from 20 to 800 per liposome and their targeting efficiency was evaluated in vitro. MET-targeted liposomes (MET-TLs) associated more profoundly with MET-expressing cells than non-targeted liposomes (NTLs). MET-TLs with approximately 150-300 Nbs per liposome exhibited the highest association and specificity towards MET-expressing cells and retained their targeting capacity when pre-incubated with proteins from different sources. Furthermore, a MET-Nb density above 300 Nbs per liposome increased the interaction of MET-TLs with phagocytic cells by 2-fold in ex vivo human blood compared to NTLs. Overall, this study demonstrates that adjusting the MET-Nb density can increase the specificity of NPs towards their intended cellular target and reduce NP interaction with phagocytic cells.


Assuntos
Nanopartículas , Neoplasias , Anticorpos de Domínio Único , Humanos , Lipossomos/química , Ligantes
10.
Mol Pharm ; 18(3): 1247-1263, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464911

RESUMO

Curcumin-loaded polymeric micelles composed of poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) were prepared to solubilize and improve the pharmacokinetics of curcumin. Curcumin-loaded micelles were prepared by a nanoprecipitation method using mPEG5kDa-b-p(HPMA-Bz) copolymers with varying molecular weight of the hydrophobic block (5.2, 10.0, and 17.1 kDa). At equal curcumin loading, micelles composed of mPEG5kDa-b-p(HPMA-Bz)17.1kDa showed better curcumin retention in both phosphate-buffered saline (PBS) and plasma at 37 °C than micelles based on block copolymers with smaller hydrophobic blocks. No change in micelle size was observed during 24 h incubation in plasma using asymmetrical flow field-flow fractionation (AF4), attesting to particle stability. However, 22-49% of the curcumin loading was released from the micelles during 24 h from formulations with the highest to the lowest molecular weight p(HPMA-Bz), respectively, in plasma. AF4 analysis further showed that the released curcumin was subsequently solubilized by albumin. In vitro analyses revealed that the curcumin-loaded mPEG5kDa-b-p(HPMA-Bz)17.1kDa micelles were internalized by different types of cancer cells, resulting in curcumin-induced cell death. Intravenously administered curcumin-loaded, Cy7-labeled mPEG5kDa-b-p(HPMA-Bz)17.1kDa micelles in mice at 50 mg curcumin/kg showed a long circulation half-life for the micelles (t1/2 = 42 h), in line with the AF4 results. In contrast, the circulation time of curcumin was considerably shorter than that of the micelles (t1/2α = 0.11, t1/2ß = 2.5 h) but ∼5 times longer than has been reported for free curcumin (t1/2α = 0.02 h). The faster clearance of curcumin in vivo compared to in vitro studies can be attributed to the interaction of curcumin with blood cells. Despite the excellent solubilizing effect of these micelles, no cytostatic effect was achieved in neuroblastoma-bearing mice, possibly because of the low sensitivity of the Neuro2A cells to curcumin.


Assuntos
Curcumina/química , Metacrilatos/química , Polímeros/química , Acrilamidas/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química
11.
Soft Matter ; 17(8): 2132-2141, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439188

RESUMO

In this study, temperature dependent behavior of dense dispersions of core crosslinked flower-like micelles is investigated. Micelles were prepared by mixing aqueous solutions of two ABA block copolymers with PEG B-blocks and thermosensitive A-blocks containing PNIPAM and crosslinkable moieties. At a temperature above the lower critical solution temperature (LCST), self-assembly of the polymers resulted in the formation of flower-like micelles with a hydrophilic PEG shell and a hydrophobic core. The micellar core was stabilized by native chemical ligation (NCL). Above the LCST, micelles displayed a radius of ∼35 nm, while a radius of ∼48 nm was found below the LCST due to hydration of the PNIPAM core. Concentrated dispersions of these micelles (≥7.5 wt%) showed glassy state behavior below a critical temperature (Tc: 28 °C) which is close to the LCST of the polymers. Below this Tc, the increase in the micelle volume resulted in compression of micelles together above a certain concentration and formation of a glass. We quantified and compared micelle packing at different concentrations and temperatures. The storage moduli (G') of the dispersions showed a universal dependence on the effective volume fraction, which increased substantially above a certain effective volume fraction of φ = 1.2. Furthermore, a disordered lattice model describing this behavior fitted the experimental data and revealed a critical volume fraction of φc = 1.31 close to the experimental value of φ = 1.2. The findings reported provide insights for the molecular design of novel thermosensitive PNIPAM nanoparticles with tunable structural and mechanical properties.

12.
Mol Pharm ; 17(4): 1276-1292, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142290

RESUMO

meta-Tetra(hydroxyphenyl)chlorin (mTHPC) is one of the most potent second-generation photosensitizers, clinically used for photodynamic therapy (PDT) of head and neck squamous cell carcinomas. However, improvements are still required concerning its present formulation (i.e., Foscan, a solution of mTHPC in ethanol/propylene glycol (40:60 w/w)), as mTHPC has the tendency to aggregate in aqueous media, e.g., biological fluids, and it has limited tumor specificity. In the present study, polymeric micelles with three different diameters (17, 24, and 45 nm) based on benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) (PCLn-PEG; n = 9, 15, or 23) were prepared with mTHPC loadings ranging from 0.5 to 10 wt % using a film-hydration method as advanced nanoformulations for this photosensitizer. To favor the uptake of the micelles by cancer cells that overexpress the epidermal growth factor receptor (EGFR), the micelles were decorated with an EGFR-targeted nanobody (named EGa1) through maleimide-thiol chemistry. The enhanced binding of the EGFR-targeted micelles at 4 °C to EGFR-overexpressing A431 cells, compared to low-EGFR-expressing HeLa cells, confirmed the specificity of the micelles. In addition, an enhanced uptake of mTHPC-loaded micelles by A431 cells was observed when these were decorated with the EGa1 nanobody, compared to nontargeted micelles. Both binding and uptake of targeted micelles were blocked by an excess of free EGa1 nanobody, demonstrating that these processes occur through EGFR. In line with this, mTHPC loaded in EGa1-conjugated PCL23-PEG (EGa1-P23) micelles demonstrated 4 times higher photocytotoxicity on A431 cells, compared to micelles lacking the nanobody. Importantly, EGa1-P23 micelles also showed selective PDT against A431 cells compared to the low-EGFR-expressing HeLa cells. Finally, an in vivo pharmacokinetic study shows that after intravenous injection, mTHPC incorporated in the P23 micelles displayed prolonged blood circulation kinetics, compared to free mTHPC, independently of the presence of EGa1. Thus, these results make these micelles a promising nanomedicine formulation for selective therapy.


Assuntos
Mesoporfirinas/farmacologia , Polímeros/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Etilenoglicóis/química , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Nanomedicina/métodos , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/química , Polietilenoglicóis/química
13.
Biomacromolecules ; 21(5): 1739-1751, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31945299

RESUMO

In this study, a new type of injectable hydrogel called "HyMic" that can convert into core cross-linked (CCL) micelles upon exposure to matrix metalloproteinases (MMP's), was designed and developed for drug delivery applications. HyMic is composed of CCL micelles connected via an enzyme cleavable linker. To this end, two complementary ABA block copolymers with polyethylene glycol (PEG) as B block were synthesized using atom transfer radical polymerization (ATRP). The A blocks were composed of a random copolymer of N-isopropylacrylamide (NIPAM) and either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys) or N-(2-hydroxypropyl) methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA). Mixing the aqueous solutions of the obtained polymers and rising the temperature above the cloud point of the PNIPAM block resulted in the self-assembly of these polymers into flower-like micelles composed of a hydrophilic PEG shell and hydrophobic core. The micellar core was cross-linked by native chemical ligation between the cysteine (in HPMA-Cys) and thioester (in HPMA-ETSA) functionalities. A slight excess of thioester to cysteine groups (molar ratio 3:2) was used to allow further chemical reactions exploiting the unreacted thioester groups. The obtained micelles displayed a Z-average diameter of 80 ± 1 nm (PDI 0.1), and ζ-potential of -4.2 ± 0.4 mV and were linked using two types of pentablock copolymers of P(NIPAM-co-HPMA-Cys)-PEG-peptide-PEG-P(NIPAM-co-HPMA-Cys) (Pep-NC) to yield hydrogels. The pentablock copolymers were synthesized using a PEG-peptide-PEG ATRP macroinitiator and the peptide midblock (lysine-glycine-proline-glutamine-isoleucine-phenylalanine-glycine-glutamine-lysine (Lys-Gly-Pro-Gln-Gly-Ile-Phe-Gly-Gln-Lys)) consisted of either l- or d-amino acids (l-Pep-NC or d-Pep-NC), of which the l-amino acid sequence is a substrate for matrix metalloproteases 2 and 9 (MMPs 2 and 9). Upon mixing of the CCL micelles and the linker (l/d-Pep-NC), the cysteine functionalities of the l/d-Pep-NC reacted with remaining thioester moieties in the micellar core via native chemical ligation yielding a hydrogel within 160 min as demonstrated by rheological measurements. As anticipated, the gel cross-linked with l-Pep-NC was degraded in 7-45 days upon exposure to metalloproteases in a concentration-dependent manner, while the gel cross-linked with the d-Pep-NC remained intact even after 2 months. Dynamic light scattering analysis of the release medium revealed the presence of nanoparticles with a Z-average diameter of ∼120 nm (PDI < 0.3) and ζ-potential of ∼-3 mV, indicating release of core cross-linked micelles upon HyMic exposure to metalloproteases. An in vitro study demonstrated that the released CCL micelles were taken up by HeLa cells. Therefore, HyMic as an injectable and enzyme degradable hydrogel displaying controlled and on-demand release of CCL micelles has potential for intracellular drug delivery in tissues with upregulation of MMPs, for example, in cancer tissues.


Assuntos
Hidrogéis , Micelas , Células HeLa , Humanos , Metaloproteinases da Matriz , Polietilenoglicóis
14.
Biomacromolecules ; 21(1): 73-88, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31500418

RESUMO

Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.


Assuntos
DNA/química , Plasmídeos/genética , Polímeros/síntese química , Resinas Acrílicas/química , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Espectroscopia de Ressonância Magnética , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Polimerização , Polímeros/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura
15.
Acta Pharmacol Sin ; 41(7): 954-958, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32555445

RESUMO

Cancer nanomedicines have shown promise in combination immunotherapy, thus far mostly preclinically but also already in clinical trials. Combining nanomedicines with immunotherapy aims to reinforce the cancer-immunity cycle, via potentiating key steps in the immune reaction cascade, namely antigen release, antigen processing, antigen presentation, and immune cell-mediated killing. Combination nano-immunotherapy can be realized via three targeting strategies, i.e., by targeting cancer cells, targeting the tumor immune microenvironment, and targeting the peripheral immune system. The clinical potential of nano-immunotherapy has recently been demonstrated in a phase III trial in which nano-albumin paclitaxel (Abraxane®) was combined with atezolizumab (Tecentriq®) for the treatment of patients suffering from advanced triple-negative breast cancer. In the present paper, besides strategies and initial (pre)clinical success stories, we also discuss several key challenges in nano-immunotherapy. Taken together, nanomedicines combined with immunotherapy are gaining significant attention, and it is anticipated that they will play an increasingly important role in clinical cancer therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Nanomedicina , Neoplasias/terapia , Humanos , Neoplasias/imunologia , Neoplasias/patologia
16.
Chem Soc Rev ; 48(1): 351-381, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30465669

RESUMO

Immunotherapy is revolutionizing the treatment of cancer. It can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. However, immunotherapy also has limitations, such as its relatively low response rates and the development of severe side effects. These drawbacks are gradually being overcome by improving our understanding of the immune system, as well as by establishing combination regimens in which immunotherapy is combined with other treatment modalities. In addition to this, in recent years, progress made in chemistry, nanotechnology and materials science has started to impact immuno-oncology, resulting in more effective and less toxic immunotherapy interventions. In this context, multiple different nanomedicine formulations and macroscale materials have been shown to be able to boost anti-cancer immunity and the efficacy of immunomodulatory drugs. We here review nanotechnological and materials chemistry efforts related to endogenous and exogenous vaccination, to the engineering of antigen-presenting cells and T cells, and to the modulation of the tumor microenvironment. We also discuss limitations, current trends and future directions. Together, the insights provided and the evidence obtained indicate that there is a bright future ahead for engineering nanomedicines and macroscale materials for immuno-oncology applications.


Assuntos
Imunoterapia , Substâncias Macromoleculares/química , Nanomedicina , Neoplasias/imunologia , Neoplasias/terapia , Humanos
17.
Bioconjug Chem ; 30(2): 461-475, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30188694

RESUMO

Vaccines based on mRNA have emerged as potent systems to elicit CD8+ T cell responses against various cancers and viral infectious diseases. The efficient intracellular delivery of mRNA molecules encoding antigens into the cytosol of antigen-presenting cells (APCs) is still challenging, requiring cell attachment, active uptake, and subsequent endosomal escape. Here, we report a facile approach for the formulation of peptide-functionalized mRNA polyplexes using copper-free click chemistry to promote presentation of mRNA antigen by dendritic cells (DCs). After screening different membrane active peptides, GALA modified mRNA polyplexes (PPx-GALA) with a size around 350 nm and with a slightly negative surface charge (-7 mV), exhibited the highest EGFP-mRNA transfection in RAW 246.7 macrophages (∼36%) and D1 dendritic cells (∼50%) as compared to polyplexes decorated with melittin or LEDE peptides. Interestingly, we found that PPx-GALA enters DCs through sialic acid mediated endo/phagocytosis, which was not influenced by DC maturation. The PPx-GALA formulation exhibited 18-fold higher cellular uptake compared to a lipofectamine mRNA formulation without inducing cytotoxicity. Live cell imaging showed that PPx-GALA that were taken up by endocytosis induced calcein release from endosomes into the cytosol. DCs treated with PPx-GALA containing mRNA encoding for OVA displayed enhanced T cell responses and DC maturation. Collectively, these data provide a strong rationale for further study of this PPx-GALA formulation in vivo as a promising mRNA vaccine platform.


Assuntos
Células Dendríticas/metabolismo , Peptídeos/química , RNA Mensageiro/administração & dosagem , Transfecção/métodos , Animais , Linhagem Celular , Química Click , Proteínas de Fluorescência Verde/genética , Camundongos , Ovalbumina/genética , Polímeros/química , Células RAW 264.7 , RNA Mensageiro/química , RNA Mensageiro/genética
18.
Mol Pharm ; 16(4): 1633-1647, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817164

RESUMO

In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid- co-glycolic acid- co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose-dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporin-loaded NPs.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/administração & dosagem , Polímeros/química , Receptor ErbB-2/metabolismo , Saporinas/administração & dosagem , Anticorpos de Domínio Único/administração & dosagem , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/química , Saporinas/química , Anticorpos de Domínio Único/imunologia , Células Tumorais Cultivadas
19.
Mol Pharm ; 15(9): 3786-3795, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30063364

RESUMO

The aim of the study is to investigate the uptake by and transport through Caco-2 cells of two mixed micelle formulations (based on egg phosphatidylcholine and glycocholic acid) of vitamin K, i.e., with and without DSPE-PEG2000. The uptake of vitamin K and fluorescently labeled mixed micelles with and without PEG coating showed similar kinetics and their uptake ratio remained constant over time. Together with the fact that an inhibitor of scavenger receptor B1 (BLT-1) decreased cellular uptake of vitamin K by ∼80% compared to the uptake in the absence of this inhibitor, we conclude that both types of micelles loaded with vitamin K can be taken up intactly by Caco-2 cells via this scavenger receptor. The amount of vitamin K in chylomicrons fraction from Caco-2 cell monolayers further indicates that mixed micelles (with or without PEGylation) are likely packed into chylomicrons after internalization by Caco-2 cells. Uptake of vitamin K from PEGylated mixed micelles increased four- to five-fold at simulated gastrointestinal conditions. In conclusion, PEGylated mixed micelles are stable upon exposure to simulated gastric conditions, and as a result, they do show overall a higher cellular uptake efficiency of vitamin K as compared to mixed micelles without PEG coating.


Assuntos
Micelas , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Vitamina K/química , Vitamina K/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Receptores Depuradores Classe B/metabolismo
20.
Langmuir ; 34(50): 15495-15506, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30415546

RESUMO

Micelles composed of block copolymers of poly(ethylene glycol)- b-poly( N-2-benzoyloxypropyl methacrylamide) (mPEG- b-p(HPMA-Bz)) have shown great promise as drug-delivery carriers due to their excellent stability and high loading capacity. In the present study, parameters influencing micelle size were investigated to tailor sizes in the range of 25-100 nm. Micelles were prepared by a nanoprecipitation method, and their size was modulated by the block copolymer properties such as molecular weight, their hydrophilic-to-hydrophobic ratio, homopolymer content, as well as formulation and processing parameters. It was shown that the micelles have a core-shell structure using a combination of dynamic light scattering and transmission electron microscopy analysis. By varying the degree of polymerization of the hydrophobic block ( NB) between 68 and 10, at a fixed hydrophilic block mPEG5k ( NA = 114), it was shown that the hydrophobic core of the micelle was collapsed following the power law of ( NB × Nagg)1/3. Further, the calculated brush height was similar for all the micelles examined (10 nm), indicating that crew-cut micelles were made. Both addition of homopolymer and preparation of micelles at lower concentrations or lower rates of addition of the organic solvent to the aqueous phase increased the size of micelles due to partitioning of the hydrophobic homopolymer chains to the core of the micelles and lower nucleation rates, respectively. Furthermore, it was shown that by using different solvents, the size of the micelles substantially changed. The use of acetone, acetonitrile, ethanol, tetrahydrofuran, and dioxane resulted in micelles in the size range of 45-60 nm after removal of the organic solvents. The use of dimethylformamide and dimethylsulfoxide led to markedly larger sizes of 75 and 180 nm, respectively. In conclusion, the results show that by modulating polymer properties and processing conditions, micelles with tailorable sizes can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA