Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cancer Cell Int ; 24(1): 27, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200575

RESUMO

BACKGROUND: Breast cancer clinical outcome relies on its intrinsic molecular subtype and mortality is almost exclusively due to metastasis, whose mechanism remains unclear. We recently revealed the specific contribution of plasma membrane cholesterol to the invasion of malignant MCF10CAIa but not premalignant MCF10AT and normal MCF10A cell lines in 2D, through invadopodia formation and extracellular matrix (ECM) degradation. In the present study, we address the impact of breast cancer subtypes, mutations and aggressiveness on cholesterol implication in breast cancer cell invasion and 3D spheroid invasion and growth. METHODS: We used nine breast cancer cell lines grouped in four subtypes matching breast tumor classification. Four of these cell lines were also used to generate 3D spheroids. These cell lines were compared for cell invasion in 2D and 3D, spheroid growth in 3D, gelatin degradation, cortactin expression, activation and subcellular distribution as well as cell surface cholesterol distribution and lipid droplets. The effect of plasma membrane cholesterol depletion on all these parameters was determined in parallel and systematically compared with the impact of global matrix metalloproteinase (MMP) inhibition. RESULTS: The six invasive cell lines in 2D were sensitive to partial cholesterol depletion, independently of their subtype, aggressiveness or mutation. Nevertheless, the effect was stronger in the three cell lines able to degrade gelatin. 3D spheroid invasion was also reduced after cholesterol depletion in all breast cancer subtypes tested. Notably, targeting cholesterol was more powerful than MMP inhibition in reducing invasion in both 2D and 3D culture models. Moreover, cholesterol depletion in the six invasive cell lines impaired cortactin distribution in the perinuclear region where invadopodia localized. Breast cancer cell line aggressiveness relied on cholesterol-enriched domains at the ECM-free side and intracellular lipid droplets. Furthermore, the three gelatin-degrading cell lines were characterized by increased cholesterol-enriched submicrometric domains at their ECM-contact side. CONCLUSION: Together, our data suggest cell surface cholesterol combined with lipid droplet labeling as a breast cancer cell aggressiveness marker. They also open the way to test other cholesterol-targeting drugs in more complex models to further evaluate whether cholesterol could represent a strategy in breast cancer therapy.

2.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373416

RESUMO

The pancreas is a complex organ consisting of differentiated cells and extracellular matrix (ECM) organized adequately to enable its endocrine and exocrine functions. Although much is known about the intrinsic factors that control pancreas development, very few studies have focused on the microenvironment surrounding pancreatic cells. This environment is composed of various cells and ECM components, which play a critical role in maintaining tissue organization and homeostasis. In this study, we applied mass spectrometry to identify and quantify the ECM composition of the developing pancreas at the embryonic (E) day 14.5 and postnatal (P) day 1 stages. Our proteomic analysis identified 160 ECM proteins that displayed a dynamic expression profile with a shift in collagens and proteoglycans. Furthermore, we used atomic force microscopy to measure the biomechanical properties and found that the pancreatic ECM was soft (≤400 Pa) with no significant change during pancreas maturation. Lastly, we optimized a decellularization protocol for P1 pancreatic tissues, incorporating a preliminary crosslinking step, which effectively preserved the 3D organization of the ECM. The resulting ECM scaffold proved suitable for recellularization studies. Our findings provide insights into the composition and biomechanics of the pancreatic embryonic and perinatal ECM, offering a foundation for future studies investigating the dynamic interactions between the ECM and pancreatic cells.


Assuntos
Proteômica , Engenharia Tecidual , Engenharia Tecidual/métodos , Proteômica/métodos , Matriz Extracelular/metabolismo , Pâncreas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hormônios Pancreáticos/metabolismo , Alicerces Teciduais/química
3.
Development ; 143(11): 1958-70, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27068110

RESUMO

Thyroid follicles, the functional units of the thyroid gland, are delineated by a monolayer of thyrocytes resting on a continuous basement membrane. The developmental mechanisms of folliculogenesis, whereby follicles are formed by the reorganization of a non-structured mass of non-polarized epithelial cells, are largely unknown. Here we show that assembly of the epithelial basement membrane is crucial for folliculogenesis and is controlled by endothelial cell invasion and by BMP-Smad signaling in thyrocytes. Thyroid-specific Smad1 and Smad5 double-knockout (Smad1/5(dKO)) mice displayed growth retardation, hypothyroidism and defective follicular architecture. In Smad1/5(dKO) embryonic thyroids, epithelial cells remained associated in large clusters and formed small follicles. Although similar follicular defects are found in Vegfa knockout (Vegfa(KO)) thyroids, Smad1/5(dKO) thyroids had normal endothelial cell density yet impaired endothelial differentiation. Interestingly, both Vegfa(KO) and Smad1/5(dKO) thyroids displayed impaired basement membrane assembly. Furthermore, conditioned medium (CM) from embryonic endothelial progenitor cells (eEPCs) rescued the folliculogenesis defects of both Smad1/5(dKO) and Vegfa(KO) thyroids. Laminin α1, ß1 and γ1, abundantly released by eEPCs into CM, were crucial for folliculogenesis. Thus, epithelial Smad signaling and endothelial cell invasion promote folliculogenesis via assembly of the basement membrane.


Assuntos
Membrana Basal/metabolismo , Células Endoteliais/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Glândula Tireoide/embriologia , Animais , Membrana Basal/efeitos dos fármacos , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Colágeno Tipo IV/metabolismo , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipotireoidismo/metabolismo , Laminina/metabolismo , Camundongos Knockout , Organogênese/efeitos dos fármacos , Organogênese/genética , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células Epiteliais da Tireoide/citologia , Células Epiteliais da Tireoide/efeitos dos fármacos , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Cancer Sci ; 109(7): 2141-2152, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29727510

RESUMO

Ninety percent of hepatocarcinoma (HCC) develops in a chronically damaged liver. Interactions between non-tumor stromal components, especially macrophages, and cancer cells are still incompletely understood. Our aim was to determine whether a chronically injured liver represents a favorable environment for the seeding and growth of HCC cells, and to evaluate the potential roles of macrophages infiltrated within the tumor. HCC cells were injected into the liver in healthy mice (healthy liver group [HL]) and in mice chronically treated with carbon tetrachloride (CCl4 ) for 7 weeks (CCl4 7w group). Livers were examined for the presence of tumor 2 weeks post-injection. Tumor and non-tumor tissues were analyzed for macrophage infiltration, origin (monocytes-derived vs resident macrophages) and polarization state, and MMP production. Fifty-three percent of mice developed neoplastic lesion in the HL group whereas a tumor lesion was found in all livers in the CCl4 7w group. Macrophages infiltrated more deeply the tumors of the CCl4 7w group. Evaluation of factors involved in the recruitment of macrophages and of markers of their polarization state was in favor of prominent infiltration of M2 pro-tumor monocyte-derived macrophages inside the tumors developing in a chronically injured liver. MMP-2 and -9 production, attributed to M2 pro-tumor macrophages, was significantly higher in the tumors of the CCl4 7w group. In our model, chronic liver damage promotes cancer development. Our results suggest that an injured background favors the infiltration of M2 pro-tumor monocyte-derived macrophages. These secrete MMP-2 and MMP-9 that promote tumor progression.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fígado/lesões , Fígado/patologia , Animais , Tetracloreto de Carbono/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Traffic ; 15(4): 401-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24548619

RESUMO

Matrix metalloproteinase-27 (MMP-27) is poorly characterized. Sequence comparison suggests that a C-terminal extension (CTE) includes a potential transmembrane domain as in some membrane-type (MT)-MMPs. Having noticed that MMP-27 was barely secreted, we investigated its subcellular localization and addressed CTE contribution for MMP-27 retention. Intracellular MMP-27 was sensitive to endoglycosidase H. Subcellular fractionation and confocal microscopy evidenced retention of endogenous MMP-27 or recombinant rMMP-27 in the endoplasmic reticulum (ER) with locked exit across the intermediate compartment (ERGIC). Conversely, truncated rMMP-27 without CTE accessed downstream secretory compartments (ERGIC and Golgi) and was constitutively secreted. CTE addition to rMMP-10 (a secreted MMP) caused ER retention and blocked secretion. Addition of a PKA target sequence to the cytosolic C-terminus of transmembrane MT1-MMP/MMP-14 led to effective phosphorylation upon forskolin stimulation, but not for MMP-27, excluding transmembrane anchorage. Moreover, MMP-27 was protected from digestion by proteinase K. Finally, MT1-MMP/MMP-14 but neither endogenous nor recombinant MMP-27 partitioned in the detergent phase after Triton X-114 extraction, indicating that MMP-27 is not an integral membrane protein. In conclusion, MMP-27 is efficiently retained within the ER due to its unique CTE, which does not lead to stable membrane insertion. This could represent a novel ER retention system.


Assuntos
Retículo Endoplasmático/enzimologia , Metaloproteinases da Matriz/metabolismo , Sequência de Aminoácidos , Humanos , Metaloproteinases da Matriz/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia
6.
Hum Reprod ; 30(5): 1156-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25750204

RESUMO

STUDY QUESTION: Does the endometrial functionalis have the potential to undergo self-renewal after menstruation and how is this process controlled by ovarian steroids? SUMMARY ANSWER: Endometrial xenografts subjected to withdrawal of estradiol and progesterone shrink but also show signs of proliferation and tissue repair; new estradiol supply prevents atrophy but is not sufficient to increase graft volume. WHAT IS KNOWN ALREADY: Menstruation, i.e. cyclic proteolysis of the extracellular matrix of endometrial functionalis, is induced by a fall in estrogen and progesterone concentration and is followed by tissue regeneration. However, there is debate about whether regenerating cells must originate from the basalis or from stem cells and whether new estrogen supply is required for the early repair concomitant with menstruation. STUDY DESIGN, SIZE, DURATION: Fragments from human endometrial functionalis (from 24 hysterectomy specimens) were xenografted in ovariectomized SCID mice and submitted to a 4-day estradiol and progesterone withdrawal (to mimic menstruation) followed by re-exposure to estradiol (to mimic the proliferative phase). We measured signs of proliferation and changes in graft volume. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometrium was collected from spontaneously cycling women. Cell proliferation was examined by immunolabeling Ki-67, cyclin D1 and phosphorylated-histone H3. Xenograft volume was measured by magnetic resonance imaging. Xenograft histomorphometry was performed to determine how the different tissue compartments contributed to volume change. MAIN RESULTS AND THE ROLE OF CHANCE: Hormone withdrawal induced a rapid decrease in graft volume mainly attributable to stroma condensation and breakdown, concomitant with an increase of proliferation markers. Reinsertion of estradiol pellets after induced menstruation blocked volume decrease and stimulated epithelial and stromal growth, but, surprisingly, did not induce graft enlargement. Reinsertion of both estradiol and progesterone pellets blocked apoptosis. LIMITATIONS, REASONS FOR CAUTION: Mechanisms of endometrial remodeling are different in women and mice and the contribution of circulating inflammatory cells in both species remains to be clarified. Moreover, during human menstruation, endometrial fragments resulting from tissue proteolysis can be expelled by the menstrual flow, unlike in this model. WIDER IMPLICATIONS OF THE FINDINGS: Menstruation is a multifocal event within the functionalis. This is the first evidence that endometrial fragments that are not shed after menstrual tissue breakdown can support endometrial regeneration. Endometriosis is commonly thought to result from the retrograde migration of menstrual fragments of the degraded functionalis into the peritoneal cavity. Our study supports their potential to regenerate as ectopic endometrium. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the Fonds de la Recherche Scientifique Médicale, Concerted Research Actions, Communauté Française de Belgique, Région wallonne, Région bruxelloise and Loterie nationale. P.H. and B.F.J. are research associates of the Belgian Fonds de la Recherche Scientifique (F.R.S.-F.N.R.S.). E.M. is Associate Editor at Human Reproduction. There is no conflict of interest to declare.


Assuntos
Endométrio/fisiologia , Endométrio/transplante , Ovário/metabolismo , Esteroides/química , Animais , Apoptose , Proliferação de Células , Ciclina D1/metabolismo , Endometriose/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Xenoenxertos/metabolismo , Humanos , Histerectomia , Antígeno Ki-67/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID , Pós-Menopausa , Progesterona/metabolismo , Regeneração , Transplante Heterólogo
7.
J Lipid Res ; 55(7): 1331-42, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24826836

RESUMO

We recently reported that trace insertion of exogenous fluorescent (green BODIPY) analogs of sphingomyelin (SM) into living red blood cells (RBCs), partially spread onto coverslips, labels submicrometric domains, visible by confocal microscopy. We here extend this feature to endogenous SM, upon binding of a SM-specific nontoxic (NT) fragment of the earthworm toxin, lysenin, fused to the red monomeric fluorescent protein, mCherry [construct named His-mCherry-NT-lysenin (lysenin*)]. Specificity of lysenin* binding was verified with composition-defined liposomes and by loss of (125)I-lysenin* binding to erythrocytes upon SM depletion by SMase. The (125)I-lysenin* binding isotherm indicated saturation at 3.5 × 10(6) molecules/RBC, i.e., ∼3% of SM coverage. Nonsaturating lysenin* concentration also labeled sub-micrometric domains on the plasma membrane of partially spread erythrocytes, colocalizing with inserted green BODIPY-SM, and abrogated by SMase. Lysenin*-labeled domains were stable in time and space and were regulated by temperature and cholesterol. The abundance, size, positioning, and segregation of lysenin*-labeled domains from other lipids (BODIPY-phosphatidylcholine or -glycosphingolipids) depended on membrane tension. Similar lysenin*-labeled domains were evidenced in RBCs gently suspended in 3D-gel. Taken together, these data demonstrate submicrometric compartmentation of endogenous SM at the membrane of a living cell in vitro, and suggest it may be a genuine feature of erythrocytes in vivo.


Assuntos
Membrana Eritrocítica/metabolismo , Microdomínios da Membrana/metabolismo , Esfingomielinas/farmacologia , Humanos , Esfingomielinas/metabolismo , Toxinas Biológicas/farmacologia
8.
Mol Hum Reprod ; 20(8): 767-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810263

RESUMO

Matrix metalloproteinases (MMPs) are key enzymes involved in extracellular matrix remodelling. In the human endometrium, the expression and activity of several MMPs are maximal during the menstrual phase. Moreover, MMPs are thought to be involved in the pathogenesis of endometriosis and cancers, in particular with invasion and metastasis. We recently reported that MMP-27 is a unique MMP with an intracellular retention motif. We investigated the expression and cellular localization of MMP-27 in the cycling human endometrium and in endometriotic lesions. MMP-27 mRNA was detected throughout the menstrual cycle. Despite large interpatient variations, mRNA levels increased from the proliferative to the secretory phase, to peak during the menstrual phase. MMP-27 was immunolocalized in large isolated cells scattered throughout the stroma and around blood vessels: these cells were most abundant at menstruation and were identified by immunofluorescence as CD45(+), CD163(+) and CD206(+) macrophages. CD163(+) macrophages were also abundant in endometriotic lesions, but showed different patterns in ovarian or peritoneal endometriotic lesions (co-labelling for CD206 and MMP-27) and rectovaginal lesions (no co-labelling). In conclusion, MMP-27 is expressed in a subset of endometrial macrophages related to menstruation and in ovarian and peritoneal endometriotic lesions.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Metaloproteinases da Matriz Secretadas/metabolismo , Receptores de Superfície Celular/metabolismo , Endometriose/genética , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Receptor de Manose , Metaloproteinases da Matriz Secretadas/genética , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
FASEB J ; 27(9): 3711-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729593

RESUMO

Menstrual endometrial breakdown induced by estradiol and progesterone withdrawal is regularly attributed to vasospasm of spiral arteries causing ischemia and hypoxia. We investigated whether hypoxia actually occurred in an in vivo model of menstruation. Three complementary approaches were used to look for signs of hypoxia in fragments of human functionalis xenografted to ovariectomized immunodeficient mice bearing pellets-releasing estradiol and progesterone, and then deprived of ovarian steroids. Hormone withdrawal 21 d after grafting induced menstrual breakdown and MMP expression within 4 d. Local partial oxygen pressure (pO2) was measured by electron paramagnetic resonance using implanted lithium phtalocyanine crystals. In mice with hormone maintenance until sacrifice, pO2 was low one week after grafting (14.8±3.4 mmHg) but increased twofold from the second week when tissue was largely revascularized. After 3 wk, pO2 was not modified by hormone withdrawal but was slightly increased on hormone reimpregnation 4 d after removal (34.7±6.1 mmHg) by comparison with hormone maintenance (27.1±8.6 mmHg). These results were confirmed using fluorescence quenching-based OxyLite measurements. In a further search for signs of hypoxia, we did not find significant HIF1-α immunostaining, nor pimonidazole adducts after hormone withdrawal. We conclude that hypoxia is not needed to trigger menstrual-like tissue breakdown or repair in human endometrial xenograft.


Assuntos
Endométrio/metabolismo , Hipóxia/metabolismo , Ciclo Menstrual/metabolismo , Transplante Heterólogo , Animais , Feminino , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinases da Matriz/genética , Ciclo Menstrual/genética , Camundongos , Ovariectomia
11.
Biochim Biophys Acta ; 1824(1): 146-56, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21982799

RESUMO

When abundant and activated, matrix metalloproteinases (MMPs, or matrixins) degrade most, if not all, constituents of the extracellular matrix (ECM). The resulting massive tissue breakdown is best exemplified in humans by the menstrual lysis and shedding of the endometrium, the mucosa lining the uterus. After menstruation, MMP activity needs to be tightly controlled as the endometrium regenerates and differentiates to avoid abnormal tissue breakdown while allowing tissue repair and fine remodelling to accommodate implantation of a blastocyst. This paper reviews how MMPs are massively present and activated in the endometrium at menstruation, and how their activity is tightly controlled at other phases of the cycle. Progesterone represses expression of many but not all MMPs. Its withdrawal triggers focal expression of MMPs specifically in the areas undergoing lysis, an effect mediated by local cytokines such as interleukin-1α, LEFTY-2, tumour necrosis factor-α and others. MMP-3 is selectively expressed at that time and activates proMMP-9, otherwise present in latent form throughout the cycle. In addition, a large number of neutrophils loaded with MMPs are recruited at menstruation through induction of chemokines, such as interleukin-8. At the secretory phase, progesterone repression of MMPs is mediated by transforming growth factor-ß. Tissue inhibitors of metalloproteinases (TIMPs) are abundant at all phases of the cycle to prevent any undue MMP activity, but are likely overwhelmed at menstruation. At other phases of the cycle, MMPs can elude TIMP inhibition as exemplified by recruitment of active MMP-7 to the plasma membrane of epithelial cells, allowing processing of membrane-associated growth factors needed for epithelial repair and proliferation. Finally, receptor-mediated endocytosis through low density lipoprotein receptor-related protein-1 (LRP-1) efficiently clears MMP-2 and -9 at the proliferative and secretory phases. This mechanism is probably essential to prevent any excessive ECM degradation by the active form of MMP-2 that is permanently present. However, shedding of the ectodomain of LRP-1 specifically at menstruation prevents endocytosis of MMPs allowing full degradation of the ECM. Thus endometrial MMPs are regulated at the levels of transcription, release from infiltrating neutrophils, activation, binding to the cell membrane, inhibition by TIMPs and endocytic clearance by LRP-1. This allows tight control during endometrial growth and differentiation but results in a burst of activity for menstrual tissue breakdown. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.


Assuntos
Endométrio/metabolismo , Endométrio/fisiologia , Metaloproteinases da Matriz/metabolismo , Ciclo Menstrual/metabolismo , Regeneração/fisiologia , Animais , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/fisiologia , Ciclo Menstrual/fisiologia , Modelos Biológicos , Periodicidade , Regeneração/genética , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Inibidores Teciduais de Metaloproteinases/fisiologia
12.
Steroids ; 198: 109284, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487815

RESUMO

Estradiol and progesterone are key regulators of the menstrual cycle. In the human endometrium, progesterone induces morphological changes required for blastocyst implantation. Dysregulated response to progesterone can lead to endometrial pathologies including uterine bleeding and endometriosis. Besides the canonical nuclear progesterone receptor (encoded by the PGR gene), alternative response pathways include Progesterone Receptor Membrane Component 1 (PGRMC1), suspected to be involved in pathogenesis of endometrial diseases. We previously reported the spatiotemporal profile of PGRMC1 expression in the human endometrium along the menstrual cycle, highlighting progressive increase and decrease during the proliferative and secretory phases, respectively. Here we directly addressed its regulation by estradiol and progesterone, with systematic comparison with regulation of PGR expression. We found a direct correlation between expression of both genes during the proliferative and secretory phases in the cycling endometrium, but not during the menstrual phase. In a xenograft model mimicking the cycle phases, estradiol significantly increased and progesterone significantly decreased PGR expression but changes were not significant for PGRMC1. Finally, we did not find any significant effect of the ovarian steroids on expression of PGR or PGRMC1 in primary culture of endometrial stromal cells, except for a small increase in PGR expression by estradiol. Altogether, our experiments do not allow a major advance in our understanding of the mechanisms of cyclic variation of PGRMC1 expression, in particular regarding potential regulation by the ovarian steroids.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Xenoenxertos , Endométrio/patologia , Esteroides/metabolismo , Técnicas de Cultura de Células , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
13.
Biomolecules ; 13(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830688

RESUMO

Myoblast migration is crucial for myogenesis and muscular tissue homeostasis. However, its spatiotemporal control remains elusive. Here, we explored the involvement of plasma membrane cholesterol and sphingolipids in this process. In resting C2C12 mouse myoblasts, those lipids clustered in sphingomyelin/cholesterol/GM1 ganglioside (SM/chol/GM1)- and cholesterol (chol)-enriched domains, which presented a lower stiffness than the bulk membrane. Upon migration, cholesterol and sphingomyelin polarized at the front, forming cholesterol (chol)- and sphingomyelin/cholesterol (SM/chol)-enriched domains, while GM1-enriched domains polarized at the rear. A comparison of domain proportion suggested that SM/chol- and GM1-enriched domains originated from the SM/chol/GM1-coenriched domains found at resting state. Modulation of domain proportion (through cholesterol depletion, combined or not with actin polymerization inhibition, or sphingolipid synthesis inhibition) revealed that the higher the chol- and SM/chol-enriched domains, the higher the myoblast migration. At the front, chol- and SM/chol-enriched domains were found in proximity with F-actin fibers and the lateral mobility of sphingomyelin in domains was specifically restricted in a cholesterol- and cytoskeleton-dependent manner while domain abrogation impaired F-actin and focal adhesion polarization. Altogether, we showed the polarization of cholesterol and sphingomyelin and their clustering in chol- and SM/chol-enriched domains with differential properties and roles, providing a mechanism for the spatial and functional control of myoblast migration.


Assuntos
Gangliosídeo G(M1) , Esfingomielinas , Animais , Camundongos , Esfingomielinas/metabolismo , Actinas , Colesterol/metabolismo , Análise por Conglomerados
14.
J Am Soc Mass Spectrom ; 34(10): 2259-2268, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37712225

RESUMO

The potential of mass spectrometry imaging, and especially ToF-SIMS 2D and 3D imaging, for submicrometer-scale, label-free molecular localization in biological tissues is undisputable. Nevertheless, sensitivity issues remain, especially when one wants to achieve the best lateral and vertical (nanometer-scale) resolution. In this study, the interest of in situ matrix transfer for tissue analysis with cluster ion beams (Bin+, Arn+) is explored in detail, using a series of six low molecular weight acidic (MALDI) matrices. After estimating the sensitivity enhancements for phosphatidylcholine (PC), an abundant lipid type present in almost any kind of cell membrane, the most promising matrices were softly transferred in situ on mouse brain and human uterine tissue samples using a 10 keV Ar3000+ cluster beam. Signal enhancements up to 1 order of magnitude for intact lipid signals were observed in both tissues under Bi5+ and Ar3000+ bombardment. The main findings of this study lie in the in-depth characterization of uterine tissue samples, the demonstration that the transferred matrices also improve signal efficiency in the negative ion polarity and that they perform as well when using Bin+ and Arn+ primary ions for analysis and imaging.


Assuntos
Imageamento Tridimensional , Espectrometria de Massa de Íon Secundário , Camundongos , Animais , Humanos , Espectrometria de Massa de Íon Secundário/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosfatidilcolinas , Íons , Encéfalo
15.
Biomolecules ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38254651

RESUMO

Piezo1 is a mechanosensitive ion channel required for various biological processes, but its regulation remains poorly understood. Here, we used erythrocytes to address this question since they display Piezo1 clusters, a strong and dynamic cytoskeleton and three types of submicrometric lipid domains, respectively enriched in cholesterol, GM1 ganglioside/cholesterol and sphingomyelin/cholesterol. We revealed that Piezo1 clusters were present in both the rim and the dimple erythrocyte regions. Upon Piezo1 chemical activation by Yoda1, the Piezo1 cluster proportion mainly increased in the dimple area. This increase was accompanied by Ca2+ influx and a rise in echinocytes, in GM1/cholesterol-enriched domains in the dimple and in cholesterol-enriched domains in the rim. Conversely, the effects of Piezo1 activation were abrogated upon membrane cholesterol depletion. Furthermore, upon Piezo1-independent Ca2+ influx, the above changes were not observed. In healthy donors with a high echinocyte proportion, Ca2+ influx, lipid domains and Piezo1 fluorescence were high even at resting state, whereas the cytoskeleton membrane occupancy was lower. Accordingly, upon decreases in cytoskeleton membrane occupancy and stiffness in erythrocytes from patients with hereditary spherocytosis, Piezo1 fluorescence was increased. Altogether, we showed that Piezo1 was differentially controlled by lipid domains and the cytoskeleton and was favored by the stomatocyte-discocyte-echinocyte transformation.


Assuntos
Citoesqueleto , Canais Iônicos , Microtúbulos , Humanos , Colesterol , Eritrócitos , Gangliosídeo G(M1) , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Canais Iônicos/metabolismo
16.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132106

RESUMO

A specific plasma membrane distribution of the mechanosensitive ion channel Piezo1 is required for cell migration, but the mechanism remains elusive. Here, we addressed this question using WT and Piezo1-silenced C2C12 mouse myoblasts and WT and Piezo1-KO human kidney HEK293T cells. We showed that cell migration in a cell-free area and through a porous membrane decreased upon Piezo1 silencing or deletion, but increased upon Piezo1 activation by Yoda1, whereas migration towards a chemoattractant gradient was reduced by Yoda1. Piezo1 organized into clusters, which were preferentially enriched at the front. This polarization was stimulated by Yoda1, accompanied by Ca2+ polarization, and abrogated by partial cholesterol depletion. Piezo1 clusters partially colocalized with cholesterol- and GM1 ganglioside-enriched domains, the proportion of which was increased by Yoda1. Mechanistically, Piezo1 activation induced a differential mobile fraction of GM1 associated with domains and the bulk membrane. Conversely, cholesterol depletion abrogated the differential mobile fraction of Piezo1 associated with clusters and the bulk membrane. In conclusion, we revealed, for the first time, the differential implication of Piezo1 depending on the migration mode and the interplay between GM1/cholesterol-enriched domains at the front during migration in a cell-free area. These domains could provide the optimal biophysical properties for Piezo1 activity and/or spatial dissociation from the PMCA calcium efflux pump.


Assuntos
Gangliosídeo G(M1) , Canais Iônicos , Animais , Humanos , Camundongos , Movimento Celular , Colesterol , Células HEK293 , Canais Iônicos/metabolismo
17.
Front Physiol ; 14: 1205493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408586

RESUMO

Transfusion of red blood cell concentrates is the most common medical procedure to treat anaemia. However, their storage is associated with development of storage lesions, including the release of extracellular vesicles. These vesicles affect in vivo viability and functionality of transfused red blood cells and appear responsible for adverse post-transfusional complications. However, the biogenesis and release mechanisms are not fully understood. We here addressed this issue by comparing the kinetics and extents of extracellular vesicle release as well as red blood cell metabolic, oxidative and membrane alterations upon storage in 38 concentrates. We showed that extracellular vesicle abundance increased exponentially during storage. The 38 concentrates contained on average 7 × 1012 extracellular vesicles at 6 weeks (w) but displayed a ∼40-fold variability. These concentrates were subsequently classified into 3 cohorts based on their vesiculation rate. The variability in extracellular vesicle release was not associated with a differential red blood cell ATP content or with increased oxidative stress (in the form of reactive oxygen species, methaemoglobin and band3 integrity) but rather with red blood cell membrane modifications, i.e., cytoskeleton membrane occupancy, lateral heterogeneity in lipid domains and transversal asymmetry. Indeed, no changes were noticed in the low vesiculation group until 6w while the medium and the high vesiculation groups exhibited a decrease in spectrin membrane occupancy between 3 and 6w and an increase of sphingomyelin-enriched domain abundance from 5w and of phosphatidylserine surface exposure from 8w. Moreover, each vesiculation group showed a decrease of cholesterol-enriched domains associated with a cholesterol content increase in extracellular vesicles but at different storage time points. This observation suggested that cholesterol-enriched domains could represent a starting point for vesiculation. Altogether, our data reveal for the first time that the differential extent of extracellular vesicle release in red blood cell concentrates did not simply result from preparation method, storage conditions or technical issues but was linked to membrane alterations.

19.
Blood Adv ; 7(17): 4705-4720, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36753606

RESUMO

Splenectomy improves the clinical parameters of patients with hereditary spherocytosis, but its potential benefit to red blood cell (RBC) functionality and the mechanism behind this benefit remain largely overlooked. Here, we compared 7 nonsplenectomized and 13 splenectomized patients with mutations in the ß-spectrin or the ankyrin gene. We showed that hematological parameters, spherocyte abundance, osmotic fragility, intracellular calcium, and extracellular vesicle release were largely but not completely restored by splenectomy, whereas cryohemolysis was not. Affected RBCs exhibited decreases in ß-spectrin and/or ankyrin contents and slight alterations in spectrin membrane distribution, depending on the mutation. These modifications were found in both splenectomized and nonsplenectomized patients and poorly correlated with RBC functionality alteration, suggesting additional impairments. Accordingly, we found an increased abundance of septins, small guanosine triphosphate-binding cytoskeletal proteins. Septins-2, -7, and -8 but not -11 were less abundant upon splenectomy and correlated with the disease severity. Septin-2 membrane association was confirmed by immunolabeling. Except for cryohemolysis, all parameters of RBC morphology and functionality correlated with septin abundance. The increased septin content might result from RBC maturation defects, as evidenced by (1) the decreased protein 4.2 and Rh-associated glycoprotein content in all patient RBCs, (2) increased endoplasmic reticulum remnants and endocytosis proteins in nonsplenectomized patients, and (3) increased lysosomal and mitochondrial remnants in splenectomized patients. Our study paves the way for a better understanding of the involvement of septins in RBC membrane biophysical properties. In addition, the lack of restoration of septin-independent cryohemolysis by splenectomy may call into question its recommendation in specific cases.


Assuntos
Espectrina , Esferocitose Hereditária , Humanos , Espectrina/genética , Espectrina/metabolismo , Septinas/genética , Septinas/metabolismo , Esplenectomia , Anquirinas/genética , Anquirinas/metabolismo , Esferocitose Hereditária/cirurgia , Esferocitose Hereditária/genética , Eritrócitos/metabolismo
20.
FASEB J ; 25(8): 2770-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21518850

RESUMO

Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa ß-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼ 2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.


Assuntos
Antígenos CD/metabolismo , Colesterol/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteases/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM12 , Antígenos CD/química , Sequência de Bases , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Epitelioides/metabolismo , Fibroblastos/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA