Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE J Transl Eng Health Med ; 9: 4900214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489483

RESUMO

Many clinical procedures would benefit from direct and intuitive real-time visualization of anatomy, surgical plans, or other information crucial to the procedure. Three-dimensional augmented reality (3D-AR) is an emerging technology that has the potential to assist physicians with spatial reasoning during clinical interventions. The most intriguing applications of 3D-AR involve visualizations of anatomy or surgical plans that appear directly on the patient. However, commercially available 3D-AR devices have spatial localization errors that are too large for many clinical procedures. For this reason, a variety of approaches for improving 3D-AR registration accuracy have been explored. The focus of this review is on the methods, accuracy, and clinical applications of registering 3D-AR devices with the clinical environment. The works cited represent a variety of approaches for registering holograms to patients, including manual registration, computer vision-based registration, and registrations that incorporate external tracking systems. Evaluations of user accuracy when performing clinically relevant tasks suggest that accuracies of approximately 2 mm are feasible. 3D-AR device limitations due to the vergence-accommodation conflict or other factors attributable to the headset hardware add on the order of 1.5 mm of error compared to conventional guidance. Continued improvements to 3D-AR hardware will decrease these sources of error.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Humanos , Imageamento Tridimensional
2.
Virtual Augment Mixed Real (2021) ; 12770: 117-133, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35079751

RESUMO

The extended realities, including virtual, augmented, and mixed realities (VAMR) have recently experienced significant hardware improvement resulting in an expansion in medical applications. These applications can be classified by the target end user (for instance, classifying applications as patient-centric, physician-centric, or both) or by use case (for instance educational, diagnostic tools, therapeutic tools, or some combination). When developing medical applications in VAMR, careful consideration of both the target end user and use case must heavily influence design considerations, particularly methods and tools for interaction and navigation. Medical imaging consists of both 2-dimensional and 3-dimensional medical imaging which impacts design, interaction, and navigation. Additionally, medical applications need to comply with regulatory considerations which will also influence interaction and design considerations. In this manuscript, the authors explore these considerations using three VAMR tools being developed for cardiac electrophysiology procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA