Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 20(25): 255703, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19491463

RESUMO

We report low temperature cathodoluminescence spectroscopy measurements of the band edge emission from ZnO nanostructures grown by vapour phase transport on Si. A range of donor bound exciton emission lines are found and the Al-related emission at 3.3605 eV in particular shows a marked inhomogeneity in its distribution throughout the sample. Increased 3.3605 eV emission is seen at a range of locations in nanorods and nanosheets where different nanostructures cross or coalesce, suggesting aggregation of Al donors in ZnO in regions of crystal structure disruption. However, localized crystal structure disruption appears to be a necessary rather than a sufficient condition for Al aggregation, since increased 3.3605 eV emission is seen only in such regions, but not all such regions show increased emission, implying that the microscopic nature of such regions is important in determining Al aggregation. Supporting data are presented from well-aligned, non-crossing, nanorods on a-sapphire.

2.
Sci Technol Adv Mater ; 10(4): 045003, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877303

RESUMO

We found that a ZnO film of 2 µm thickness which was laser-deposited at room temperature onto a plain soda lime glass substrate, exhibits notable antibacterial activity against a biofilm of Staphylococcus epidermidis when back-illuminated by a UVA light source with a peak emission wavelength of about 365 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-visible absorption spectroscopy, Raman spectroscopy and x-ray photoemission spectroscopy (XPS) were used to characterize the ZnO films before and after the interactions with the biofilm and the ultraviolet light, respectively. The as-deposited film was highly textured with the wurtzite (0002) in-plane orientation (c-axis perpendicular to ZnO surface) and had a surface rms roughness of 49.7 nm. In the as-deposited film, the Zn to O ratio was 1 to 0.95. After the UV and biofilm treatments, the ZnO film surface had become rougher (rms roughness 68.1 nm) and presented uniform micron-sized pitting randomly distributed, while the zinc to oxygen ratio had become 1 to 2.2. In this case, both the UV-visible and Raman spectra pointed to degradation of the structural quality of the material. On the strength of these data, we propose a model for the mediation of the bactericidal activity in which the photogeneration of highly oxidizing species and the presence of active surface defect sites both play an important role. This study is of particular interest for the acute problem of disinfection of pathogenic biofilms which form on medical device/implant surfaces.

3.
Nanotechnology ; 15(12)2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34911210

RESUMO

Polar ZnO surfaces with O- and Zn-termination were studied with atomic and lateral force microscopy and force curves. Adsorbed fluid layers on both surfaces are found to dominate their adhesion properties in air. The hydrophilic O-surface has a substantially thicker adsorbed layer and larger residual particle densities. Our data suggest that different preparation is required for the two surfaces before use in epitaxy, and may resolve some contradictions in the literature. The data also indicate that adsorbed fluid layers may be important in the growth of certain ZnO nanostructures.

4.
Nanoscale ; 3(4): 1675-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21327223

RESUMO

In this work we present a method for the deposition of periodically ordered, c-axis aligned ZnO nanorod arrays. By using chemical bath deposited films in conjunction with silica templating through nanosphere monolayers, masks suitable for high temperature deposition are created. A vapour phase transport technique is then used to deposit ordered arrays, quickly and inexpensively in a manner ideal for low cost, scalable and reproducible growth on a diverse range of substrates.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxido de Zinco/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA