Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 302-316, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117753

RESUMO

The surface of nanocrystalline cerium oxide (CeO2) was treated with various chemical agents by a simple postmodification method at 25 °C and atmospheric pressure. Hydrogen peroxide, ammonium persulfate, deionized water, ascorbic acid, and ortho-phosphoric acid were used in order to study and evaluate their effect on surface materials, such as surface area, crystallite size, number of surface hydroxyl groups, particle morphology, and Ce3+/Ce4+ ratio. Paraoxon-methyl (PO) decomposition and inorganic phosphate adsorption were used to evaluate the effect of surface treatment on catalytic and adsorption properties. CeO2 surface was studied by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and acid-base titration. While the treatment procedure affected the number of surface hydroxyl groups and the amount of bulk surface oxygen vacancies, only negligible changes were observed in the Ce3+/Ce4+ ratio. Interestingly, surface treatment affected the ability to decompose PO, but only a small effect on inorganic phosphate adsorption was observed, indicating the robustness of CeO2 for the latter. A mechanism for possible interaction of the used chemicals with the CeO2 surface was proposed.

2.
Inorg Chem ; 63(4): 2298-2309, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234266

RESUMO

Nanoceria is a promising nanomaterial for the catalytic hydrolysis of a wide variety of substances. In this study, it was experimentally demonstrated for the first time that CeO2 nanostructures show extraordinary reactivity toward sulfonamide drugs (sulfadimethoxine, sulfamerazine, and sulfapyridine) in aqueous solution without any illumination, activation, or pH adjustment. Hydrolytic cleavage of various bonds, including S-N, C-N, and C-S, was proposed as the main reaction mechanism and was indicated by the formation of various reaction products, namely, sulfanilic acid, sulfanilamide, and aniline, which were identified by HPLC-DAD, LC-MS/MS, and NMR spectroscopy. The kinetics and efficiency of the ceria-catalyzed hydrolytic cleavage were dependent on the structure of the sulfonamide molecule and physicochemical properties of Nanoceria prepared by three different precipitation methods. However, in general, all three ceria samples were able to cleave SA drugs tested, proving the robust and unique surface reactivity toward these compounds inherent to cerium dioxide. The demonstrated reactivity of CeO2 to molecules containing sulfonamide or even sulfonyl (and similar) functional groups may be significant for both heterogeneous catalysis and environmentally important degradation reactions.

3.
Rev Environ Contam Toxicol ; 236: 239-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26423076

RESUMO

Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.


Assuntos
Substâncias para a Guerra Química/química , Poluentes Ambientais/química , Recuperação e Remediação Ambiental , Nanopartículas Metálicas/química , Óxidos/química
4.
ACS Omega ; 8(29): 26610-26618, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521625

RESUMO

Two types of CeO2 nanoparticles (CeNPs) prepared by low-temperature (<100 °C) precipitation methods in water were successfully immobilized in a matrix of electrospun PA6 nanofibers. The colloidal solutions of CeNPs in AcOH were directly mixed with the polymer solution before the needle electrospinning process, thereby achieving their good dispersion in the nanofibers. CeNPs embedded in the structure and on the surface of nanofibers exposing their reactive surfaces showed robust dephosphorylation catalytic activity, as demonstrated by monitoring the hydrolytic cleavage of three phosphodiester molecules (p-NP-TMP, p-NPPC, BNPP) in water by the HPLC method. This procedure allowed us to study the kinetics and mechanism of the hydrolytic cleavage and the ability of immobilized CeNPs to cleave different types of P-O bonds. One of the main hydrolysis products, p-nitrophenol, was effectively adsorbed on PA6 nanofibers, which may allow the selective separation of the degradation products after hydrolysis.

5.
Glob Chall ; 6(11): 2200076, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381130

RESUMO

Adsorption and advanced oxidation processes, especially photocatalysis, are amongst the most common water treatment methodologies. Unfortunately, using each of these techniques independently does not fully eliminate the pollutants of diverse nature, which are present in wastewater. Here, an avenue for multifunctional materials for water treatment is opened by reporting for the first time the preparation, characterization, and study of the properties of a novel multifunctional nanocomposite with both adsorption and visible-light-driven photocatalysis abilities. These multifunctional nanocomposites, namely iron (II, III) oxide/poly(N-isopropylacrylamide-co-methacrylic acid)/silver-titanium dioxide (Fe3O4/P(NIPAM-co-MAA)/Ag-TiO2), are prepared by combining magnetic polymeric microspheres (Fe3O4/P(NIPAM-co-MAA)) with silver-decorated titanium dioxide nanoparticles (Ag-TiO2 NPs). Cationic dyes, such as basic fuchsin (BF), can be adsorbed by the nanocomposites thanks to the carboxylic groups of Fe3O4/P(NIPAM-co-MAA) microspheres. Concomitantly, the presence of Ag-TiO2 NPs endows the system with the visible-light-driven photocatalytic degradation ability toward antibiotics such as ciprofloxacin (CIP) and norfloxacin (NFX). Furthermore, the proposed nanocomposites show antibacterial activity toward Escherichia coli (E. coli), thanks to the presence of silver nanoparticles (Ag NPs). Due to the superparamagnetic properties of iron (II, III) oxide nanoparticles (Fe3O4 NPs), the nanocomposites can be also recycled and reused, after the cleaning process, by using an external magnetic field.

6.
ACS Appl Mater Interfaces ; 14(1): 873-890, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932905

RESUMO

Nickel-decorated mesoporous cerium-iron oxide composites were synthesized by a combination of incipient wetness impregnation and template-assisted hydrothermal techniques. The effects of the Fe/Ce ratio and the calcination temperature of cerium-iron oxides on the phase composition, texture, structure, and redox properties of the composites were studied by a combination of N2 physisorption, XRD, high-resolution transmission electron microscopy, SEM, Mössbauer, Raman, XPS, ultraviolet-visible and FTIR spectroscopies, H2-temperature-programmed reduction, and total oxidation of ethyl acetate as a catalytic test. The combined physicochemical characterization and in situ FTIR investigation of methanol decomposition was used for a proper understanding of the microstructure of the Ni/FeCe oxide composites and the mechanism of the reaction occurring on them. The complex role of the FeCe support in the stabilization of highly dispersed Ni particles, the generation of surface intermediates, and the impact of the support phase transformation under the reaction medium are discussed.

7.
ACS Appl Nano Mater ; 5(12): 17956-17968, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36583119

RESUMO

Nanoscale cerium-bismuth oxides/oxynitrates were prepared by a scalable low-temperature method at ambient pressure using water as the sole solvent. Solid solutions were formed up to a 1:1 Ce/Bi molar ratio, while at higher doping levels, bismuth oxynitrate photocatalysts with a pronounced layered structure were formed. Bismuth caused significant changes in the structure and surface properties of nanoceria, such as the formation of defects, oxygen-containing surface groups, and Lewis and Brønsted acid sites. The prepared bifunctional adsorbents/photocatalysts were efficient in the removal of toxic organophosphate (methyl paraoxon) from water by reactive adsorption followed by photocatalytic decomposition of the parent compound and its degradation product (p-nitrophenol). Bi-doped ceria also effectively adsorbed and photodegraded the endocrine disruptors bisphenols A and S and outperformed pure ceria and the P25 photocatalyst in terms of efficiency, durability, and long-term stability. The very low toxicity of Bi-nanoceria to mammalian cells, aquatic organisms, and bacteria has been demonstrated by comprehensive in vivo/in vitro testing, which, in addition to its simple "green" synthesis, high activity, and durability, makes Bi-doped ceria promising for safe use in abatement of toxic chemicals.

8.
RSC Adv ; 11(23): 13980-13991, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423911

RESUMO

Antibiotics in wastewater represent a growing and worrying menace for environmental and human health fostering the spread of antimicrobial resistance. Titanium dioxide (TiO2) is a well-studied and well-performing photocatalyst for wastewater treatment. However, it presents drawbacks linked with the high energy needed for its activation and the fast electron-hole pair recombination. In this work, TiO2 nanoparticles were decorated with Ag nanoparticles by a facile photochemical reduction method to obtain an increased photocatalytic response under visible light. Although similar materials have been reported, we advanced this field by performing a study of the photocatalytic mechanism for Ag-TiO2 nanoparticles (Ag-TiO2 NPs) under visible light taking in consideration also the rutile phase of the TiO2 nanoparticles. Moreover, we examined the Ag-TiO2 NPs photocatalytic performance against two antibiotics from the same family. The obtained Ag-TiO2 NPs were fully characterised. The results showed that Ag NPs (average size: 23.9 ± 18.3 nm) were homogeneously dispersed on the TiO2 surface and the photo-response of the Ag-TiO2 NPs was greatly enhanced in the visible light region when compared to TiO2 P25. Hence, the obtained Ag-TiO2 NPs showed excellent photocatalytic degradation efficiency towards the two fluoroquinolone-based antibiotics ciprofloxacin (92%) and norfloxacin (94%) after 240 min of visible light irradiation, demonstrating a possible application of these particles in wastewater treatment. In addition, it was also proved that, after five Ag-TiO2 NPs re-utilisations in consecutive ciprofloxacin photodegradation reactions, only a photocatalytic efficiency drop of 8% was observed. Scavengers experiments demonstrated that the photocatalytic mechanism of ciprofloxacin degradation in the presence of Ag-TiO2 NPs is mainly driven by holes and ˙OH radicals, and that the rutile phase in the system plays a crucial role. Finally, Ag-TiO2 NPs showed also antibacterial activity towards Escherichia coli (E. coli) opening the avenue for a possible use of this material in hospital wastewater treatment.

9.
ACS Appl Mater Interfaces ; 13(1): 1838-1852, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320516

RESUMO

A series of mesoporous cerium-iron binary oxides was prepared by a hydrothermal technique using CTAB as a template. The influence of the Fe/Ce ratio and the variations in the preparation techniques such as the type of solvent and the precipitation agent, the approach of the template release, and the temperature of calcination on the phase composition, textural, structural, surface, and redox properties of the obtained materials was studied in details by XRD, nitrogen physisorption, TPR, FTIR, UV-vis, XPS, Raman, and Moessbauer spectroscopies. The materials were tested as catalysts in methanol decomposition and total oxidation of ethyl acetate. It was assumed that the binary materials represented a complex mixture of differently substituted ceria- and hematite-like phases. Critical assessment of their formation on the base of a common mechanism scheme was proposed. This scheme declares the key role of the formation of shared Ce-O-Fe structures by insertion of Fe3+ in the ceria lattice and further competitive compensation of the lattice charge balance by the existing in the system ions, which could be controlled by the Fe/Ce ratio and the hydrothermal synthesis procedure used. This mechanism provides proper understanding and regulation of the catalytic behavior of cerium-iron oxide composites in methanol decomposition with a potential for hydrogen production and total oxidation of ethyl acetate as a model of VOCs.

10.
Antioxidants (Basel) ; 10(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34065001

RESUMO

Since biological applications and toxicity of graphene-based materials are structure dependent, studying their interactions with the biological systems is very timely and important. We studied short-term (1, 24, and 48 h) effects of ultrapure (GO) and Mn2+-contaminated (GOS) graphene oxide on normal human dermal fibroblasts (NHDF) and adenocarcinomic human alveolar basal epithelial cells (A549) using selected oxidative stress markers and cytokines: glutathione reductase (GR) and catalase (CAT) activity, total antioxidative capacity (TAC), and malondialdehyde (MDA) concentration, levels of vascular endothelial growing factor (VEGF), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor-BB (PDGF-BB), and eotaxin. GOS induced higher levels of oxidative stress, measured with CAT activity, TAC, and MDA concentration than GO in both cell lines when compared to control cells. GR activity decreased in time in NHDF cells but increased in A549 cells. The levels of cytokines were related to the exposure time and graphene oxide type in both analyzed cell lines and their levels comparably increased over time. We observed higher TNF-α levels in NHDF and higher levels of VEGF and eotaxin in the A549 cell line. Both types of cells showed similar susceptibility to GO and GOS. We concluded that the short-time exposure to GOS induced the stronger response of oxidative stress markers without collapsing the antioxidative systems of analysed cells. Increased levels of inflammatory cytokines after GO and GOS exposure were similar both in NHDF and A549 cells.

11.
Nanomaterials (Basel) ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578568

RESUMO

Apart from the frequently used high-temperature annealing of detonation nanodiamonds (DNDs) in an inert environment, laser irradiation of DNDs in a liquid can be effectively used for onion-like carbon (OLC) formation. Here, we used fully de-aggregated hydrogenated DNDs (H-DNDs) dispersed in ethanol, which were irradiated for up to 60 min using a 532 nm NdYAG laser with an energy of 150 mJ in a pulse (5 J/cm2) at a pulse duration of 10 ns and a repetition rate of 10 Hz. We investigated the DND surface chemistry, zeta potential, and structure as a function of laser irradiation time. Infrared spectroscopy revealed a monotonical decrease in the C-Hx band intensities and an increase of the C-O and C=O features. Transmission electron microscopy (TEM) revealed the formation of OLC, as well as a gradual loss of nanoparticle character, with increasing irradiation time. Surprisingly, for samples irradiated up to 40 min, the typical and unchanged DND Raman spectrum was recovered after their annealing in air at 450 °C for 300 min. This finding indicates the inhomogeneous sp3 to sp2 carbon transformation during laser irradiation, as well as the insensitivity of DND Raman spectra to surface chemistry, size, and transient structural changes.

12.
RSC Adv ; 11(29): 17976-17984, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35480219

RESUMO

Regenerated bead cellulose is a promising material with excellent mechanical and rheological properties, ideally suited for advanced environmental applications. By introducing the amidoxime functional group into the glucose unit at the C-6 position, highly effective reactive sorbent was prepared and used to destroy priority hazardous substances such as organophosphate pesticides or nerve-paralytic chemical warfare agents (CWAs). Quantum mechanical (QM) calculations were performed to study the interactions of organophosphates with amidoxime functional groups at the molecular level. It was found that the energetic reaction barrier of the rate-limiting step is markedly reduced (from 31.40 to 11.37 kcal mol-1) in the case of the amidoxime-catalysed degradation of parathion methyl, which resulted in a dramatic increase in the degradation rate; this was fully confirmed by experiments, in which the pesticide degradation proceeded at the time scale of several hours (t 1/2 = 20-30 hours at pH 7.22).

13.
Colloids Surf B Biointerfaces ; 202: 111680, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33714189

RESUMO

The use of Ag-modified nanomaterials continues to attract attention in biological contamination control, their potential cytotoxicity is often overlooked. Herein, biocompatible carbon nitride is modified with 1 and 5 wt.% Ag and effects of different nanomaterial dose and Ag content on antimicrobial activity and cytotoxicity is studied. Pure Ag nanoparticles and AgNO3 is tested for comparison, together with ten bacterial strains including pan-resistant Pseudomonas aeruginosa. Cytotoxicity is then investigated in three adherent and two suspension human cell lines, and results confirm that cancer adherent cell lines are the most immune lines and human cervical adenocarcinoma cells (HeLa) are more resilient than human lung adenocarcinoma cells (A549). The HeLa remains over 90 % viable even after 24 -h treatment with the highest concentration of 5%Ag/g-C3N4 (300 mg L-1) while A549 sustained viability only up to 100 mg L-1. Higher concentrations then induce cytotoxicity and A549 cell viability decreases. Our results show the importance of complementary testing of cytotoxicity by LIVE/DEAD assay using flow cytometry with more different human cell lines, which might be less immune to tested nanomaterials than HeLa and A549. Combined controls of new antibacterial agent activity tests then provide increased knowledge of their biocompatibility.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Humanos , Nitrilas
14.
Polymers (Basel) ; 12(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272693

RESUMO

In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration process and, at the same time, leads to material loss and potential toxicity. In this work, a new nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3N4 to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal amount of PMMA was determined by measuring the adsorption and photocatalytic properties of g-C3N4/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of methylene blue. It was found that the prepared membranes were able to effectively adsorb and decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior, showing no coloration on their surfaces after contact with methylene blue, unlike in the case of unmodified fabric. After further treatment with H2O2, no decrease in photocatalytic activity was observed, indicating that the prepared membrane can also be easily regenerated. This study promises possibilities for the production of photocatalytic membranes and fabrics for both chemical and biological contaminant control.

15.
RSC Adv ; 10(24): 14441-14450, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498481

RESUMO

A simple low-temperature water-based and one-pot synthesis was developed for the preparation of nanocrystalline CeO2 that was used for degradation of the toxic organophosphate pesticide parathion methyl. By changing the reaction temperature in the range from 5 °C to 95 °C, several properties (i.e., crystallinity, grain size and surface area) of nanoceria can be easily controlled. The catalytic decomposition of parathion methyl to its degradation product 4-nitrophenol was highly dependent on the CeO2 preparation temperature. It was demonstrated that at low temperature (i.e. 5 °C), CeO2 with very small crystallites (<2 nm) and high surface area can be obtained. For practical use, it was demonstrated that highly crystalline CeO2 can be prepared at room-temperature (30 °C) in at least 100 g batches. It was shown that precipitated nanoceria had high thermal stability and its post-synthesis annealing up to 400 °C did not significantly alter the material properties and hence the catalytic activity. Furthermore, as shown by the reusability tests, the sorbent can be reactivated by simply washing with water which demonstrated its durability.

16.
RSC Adv ; 10(33): 19542-19552, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35515455

RESUMO

Surface catalyzed reactions can be a convenient way to deactivate toxic chemical warfare agents (CWAs) and remove them from the contaminated environment. In this study, pure titanium oxide, magnesium hydroxide, and their composites TiO2/Mg(OH2) were prepared by thermal decomposition and precipitation of the titanium peroxo-complex and/or magnesium nitrate in an aqueous solution. The as-prepared composites were examined by XRD, XPS, HRTEM, and nitrogen physisorption. Their decontamination ability was tested on CWA surrogates and determined by high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC-MS). Dimethyl methyl phosphonate (DMMP) was used as a G simulant for the nerve agents sarin (GB) and soman (GD) while 2-chloroethyl ethyl sulfide (2-CEES) and 2-chloroethyl phenyl sulfide (2-CEPS) were used as surrogates of sulfur mustard (HD). The activity of the as-prepared composites was correlated with acid-base properties determined by potentiometric titrations and pyridine adsorption studied by in situ DRIFTS. The mixing of Ti and Mg led to an increase of the surface area and the amount of surface -OH groups (with an increasing amount of Ti) that caused improved degradation of DMMP.

17.
RSC Adv ; 9(55): 32058-32065, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530782

RESUMO

Cerium oxide nanoparticles were prepared by calcination of basic cerous carbonate (as a precursor) obtained by precipitation from an aqueous solution. Prepared samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HRSEM), BET (Brunauer-Emmett-Teller) surface area and porosity measurement. Prepared cerium oxide was applied as a destructive sorbent for the fast and safe degradation of organophosphorus flame retardant triphenyl phosphate (TPP). It was shown that cerium dioxide was effective in the decomposition of TPP by cleavage of the P-O-aryl bond in the flame retardant molecule. A degradation mechanism for TPP on the ceria surface was proposed. The degradation is governed by conversion of TPP via diphenyl phosphate (DPP) to the final product identified as phenol (Ph). The key parameter increasing the degradation efficiency of CeO2 is the temperature of calcination. At optimum calcination temperature (500 °C), the produced ceria retains a sufficiently high surface area and attains an optimum degree of crystallinity (related to a number of crystal defects, and thus potential reactive sites). The fast and efficient degradation of organophosphorus flame retardant TPP was observed in a polar aprotic solvent (acetonitrile) that is miscible with water.

18.
J Hazard Mater ; 359: 482-490, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30075367

RESUMO

Two water-based methods were used to produce TiO2/graphene oxide (GO) nanocomposites with 1 and 2 wt.% GO. Both procedures exclude the use of organometallic precursors, as well as the high-pressure and high-temperature treatments, which facilitate pure and energy efficient synthesis amenable for larger scale synthesis. Nanocomposites with narrow (<10 nm) and long spindle-like (<100 nm) TiO2 nanoparticles supported on GO flakes were obtained (TiO2/GO), and their properties for reactive destruction of the organophosphorus simile chemical warfare agent (CWA) dimethyl methylphosphonate (DMMP) were investigated by in situ DRIFTS spectroscopy. Both synthesis procedures yielded highly reactive nanocomposites with markedly different properties compared to similarly prepared pure TiO2 nanoparticles. GO also induced morphology and texture changes, which were observed to have a significant impact on the adsorption and reactivity of the nanocomposites, and which were strongly related to synthesis procedure. In particular, the reduction state of GO, as measured by Raman spectroscopy, was observed to play a major role for the reactivity of the TiO2/GO nanocomposites.

19.
J Colloid Interface Sci ; 481: 28-38, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27450889

RESUMO

The uniform Sn-doped CuO nanoparticles were synthesized by a simple solution method at a low temperature. The prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy techniques (HRSEM, HRTEM, SAED, STEM and EDS elemental mapping), atomic force microscopy (AFM), UV/Vis spectroscopy, nitrogen physisorption (BET) and by evaluation of the catalytic activity on the degradation of Rhodamine B. The tin doping had a considerable influence on the morphology of CuO. The gradual narrowing of the particles morphology in the crystallographic [010] direction was observed with increasing the dopant concentration. The plate-like, rectangularsquare and rod-like CuO nanoparticles were obtained. The mechanism of a crystal growth of CuO associated with doping is proposed. The tin doping also affected the structural and optical properties of CuO. Increasing the amount of a dopant led to a red-shift of a band gap from 1.33 to 1.18eV. The incorporation of tin into the structure of copper oxide was confirmed by XRD and distribution of tin mapped by EDS analysis. The good catalytic properties of the as-prepared doped material were demonstrated by the enhanced catalytic removal of Rhodamine B in the presence of H2O2. The undoped CuO nanosheets reached only 24% efficiency in the removal of Rhodamine B within two hours. The best result exhibited CuO_050Sn sample containing 4at.% of tin and the degradation of Rhodamine B reached 99% within the same time. We have demonstrated a simple, scalable process for the preparation of catalytically very active Sn-doped CuO nanoparticles with varying properties.

20.
J Hazard Mater ; 304: 259-68, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26561750

RESUMO

Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol-gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500°C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA