Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 18(2): 171-3, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9462749

RESUMO

Waardenburg syndrome (WS; deafness with pigmentary abnormalities) and Hirschsprung's disease (HSCR; aganglionic megacolon) are congenital disorders caused by defective function of the embryonic neural crest. WS and HSCR are associated in patients with Waardenburg-Shah syndrome (WS4), whose symptoms are reminiscent of the white coat-spotting and aganglionic megacolon displayed by the mouse mutants Dom (Dominant megacolon), piebald-lethal (sl) and lethal spotting (ls). The sl and ls phenotypes are caused by mutations in the genes encoding the Endothelin-B receptor (Ednrb) and Endothelin 3 (Edn3), respectively. The identification of Sox10 as the gene mutated in Dom mice (B.H. et al., manuscript submitted) prompted us to analyse the role of its human homologue SOX10 in neural crest defects. Here we show that patients from four families with WS4 have mutations in SOX10, whereas no mutation could be detected in patients with HSCR alone. These mutations are likely to result in haploinsufficiency of the SOX10 product. Our findings further define the locus heterogeneity of Waardenburg-Hirschsprung syndromes, and point to an essential role of SOX10 in the development of two neural crest-derived human cell lineages.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Doença de Hirschsprung/genética , Síndrome de Waardenburg/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/química , Éxons , Feminino , Mutação da Fase de Leitura , Proteínas de Grupo de Alta Mobilidade/química , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Mutação Puntual , Ratos , Fatores de Transcrição SOXE , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
2.
Mech Dev ; 70(1-2): 65-76, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9510025

RESUMO

Recently, a new type of transmembrane protein with a unique combination of protein domains was characterized from human, rabbit and chicken. This protein exhibits features of the low-density lipoprotein receptor family and shows homology to the receptor of the neuropeptide head activator isolated from hydra. To study the temporal and spatial pattern of expression of this unusual new receptor we have isolated a murine homolog and, in accordance with its human counterpart, named it mSorLA. Northern blot analysis revealed the highest abundance of mSorLA transcripts in the adult brain, lower levels in a variety of other organs and expression during embryogenesis. In situ hybridization showed predominant localization in neurons of the cortex, the hippocampus and the cerebellum. During embryonic development mSorLA displayed a unique pattern of expression in the cerebral cortex, where a subpopulation of neurons was labeled before final differentiation. Transcripts of mSorLA were also detected outside the central nervous system in regions active in morphogenesis.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Receptores de LDL/genética , Animais , Córtex Cerebral/crescimento & desenvolvimento , Galinhas , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Camundongos , Mosaicismo , Coelhos
3.
Glia ; 22(4): 415-20, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9517574

RESUMO

The human neurotropic papovavirus JC, a close relative of simian virus 40, has been associated with the formation of brain tumors in humans because of its ability to induce such tumors in other primates under experimental conditions. Here we have analyzed 30 brain tumors classified as either oligodendroglioma or astrocytoma and 22 cell lines derived from human gliomas for the presence of JC viral sequences using polymerase chain reaction with two different sets of primers. None of the tumors or cell lines contained JC viral sequences. Similarly, we failed to detect expression of JC T antigen in any of 26 human glioma lines analyzed in this study. We conclude that JC virus is not a major cause of human brain tumors.


Assuntos
Neoplasias Encefálicas/virologia , Glioma/virologia , Neuroglia/virologia , Polyomavirus , Primers do DNA , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , DNA Viral/biossíntese , DNA Viral/genética , Humanos , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas
4.
J Biol Chem ; 273(26): 16050-7, 1998 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-9632656

RESUMO

Glial cells of the oligodendrocyte lineage express several highly related POU proteins including Tst-1/Oct6/SCIP and Brn-1. Tst-1/Oct6/SCIP, but not Brn-1 efficiently cooperated with Sox10, the only SRY box protein so far identified in oligodendrocytes. Here we show that, in addition to Sox10, cells of the oligodendrocyte lineage contain significant amounts of the related SRY box proteins Sox4 and Sox11. During development, Sox11 was strongly expressed in the central nervous system. It was first detected in neural precursors throughout the neuroepithelium. During later stages of neural development, Sox11 was additionally expressed in areas of the brain in which neurons undergo differentiation. In agreement with its expression in neural precursors, Sox11 levels in cells of the oligodendrocyte lineage were high in precursors and down-regulated during terminal differentiation. Outside the nervous system, expression of Sox11 was also detected in the developing limbs, face, and kidneys. Structure function analysis revealed that Sox11 has a strong intrinsic transactivation capacity which is mediated by a transactivation domain in its carboxyl-terminal part. In addition, Sox11 efficiently synergized with Brn-1. Synergy was dependent on binding of both proteins to adjacent DNA elements, and required the presence of the respective transactivation domain in each protein. Our data suggest the existence of a specific code in which POU proteins require specific Sox proteins to exhibit cooperative effects in glial cells.


Assuntos
Proteínas de Grupo de Alta Mobilidade/fisiologia , Neuropeptídeos/fisiologia , Oligodendroglia/fisiologia , Transativadores/fisiologia , Sequência de Aminoácidos , Animais , Células COS , Sinergismo Farmacológico , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Fatores do Domínio POU , Ratos , Ratos Wistar , Fatores de Transcrição SOXC , Ativação Transcricional
5.
J Neurosci ; 18(1): 237-50, 1998 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9412504

RESUMO

Sox proteins are characterized by possession of a DNA-binding domain with similarity to the high-mobility group domain of the sex determining factor SRY. Here, we report on Sox10, a novel protein with predominant expression in glial cells of the nervous system. During development Sox10 first appeared in the forming neural crest and continued to be expressed as these cells contributed to the forming PNS and finally differentiated into Schwann cells. In the CNS, Sox10 transcripts were originally confined to glial precursors and later detected in oligodendrocytes of the adult brain. Functional studies failed to reveal autonomous transcriptional activity for Sox10. Instead, Sox10 functioned synergistically with the POU domain protein Tst-1/Oct6/SCIP with which it is coexpressed during certain stages of Schwann cell development. Synergy depended on binding to adjacent sites in target promoters, was mediated by the N-terminal regions of both proteins, and could not be observed between Sox10 and several other POU domain proteins. Interestingly, Sox10 also modulated the function of Pax3 and Krox-20, two other transcription factors involved in Schwann cell development. We propose a role for Sox10 in conferring cell specificity to the function of other transcription factors in developing and mature glia.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Oligodendroglia/química , Fatores de Transcrição/genética , Fatores Etários , Animais , Sequência de Bases , Células Cultivadas , Sistema Nervoso Central/química , Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/análise , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/análise , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Crista Neural/citologia , Fator 6 de Transcrição de Octâmero , Oligodendroglia/citologia , Sistema Nervoso Periférico/química , Sistema Nervoso Periférico/embriologia , Ratos , Ratos Wistar , Fatores de Transcrição SOXE , Células de Schwann/química , Células de Schwann/citologia , Homologia de Sequência de Aminoácidos
6.
Proc Natl Acad Sci U S A ; 95(9): 5161-5, 1998 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-9560246

RESUMO

The spontaneous mouse mutant Dominant megacolon (Dom) is a valuable model for the study of human congenital megacolon (Hirschsprung disease). Here we report that the defect in the Dom mouse is caused by mutation of the gene encoding the Sry-related transcription factor Sox10. This assignment is based on (i) colocalization of the Sox10 gene with the Dom mutation on chromosome 15; (ii) altered Sox10 expression in the gut and in neural-crest derived structures of cranial ganglia of Dom mice; (iii) presence of a frameshift in the Sox10 coding region, and (iv) functional inactivation of the resulting truncated protein. These results identify the transcriptional regulator Sox10 as an essential factor in mouse neural crest development and as a further candidate gene for human Hirschsprung disease, especially in cases where it is associated with features of Waardenburg syndrome.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Doença de Hirschsprung/genética , Intestinos/inervação , Crista Neural/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Intestinos/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , RNA Mensageiro/genética , Fatores de Transcrição SOXE , Alinhamento de Sequência , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA