Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 19(9): e1800330, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30865376

RESUMO

Neomegalonema perideroedes (formerly Meganema perideroedes) str. G1 is the type strain and only described isolate of the genus Neomegalonema (formerly Meganema) which belongs to the Alphaproteobacteria. N. perideroedes is distinguished by the ability to accumulate high amounts of polyhydroxyalkanoates and has been associated with bulking problems in wastewater treatment plants due to its filamentous morphology. In 2013, its genome was sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA), which aims to improve the sequencing coverage of the poorly represented regions of the bacterial and archaeal branches of the tree of life. As N. perideroedes str. G1 is relatively distantly related to well described species-being the only sequenced member of its proposed family-the in silico prediction of genes by nucleotide homology to reference genes might be less reliable. Here, a proteomic dataset for the refinement of the N. perideroedes genome annotations is generated which clearly indicates the shortcomings of high-throughput in silico genome annotation.


Assuntos
Proteínas de Bactérias/genética , Methylobacteriaceae/genética , Proteômica , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Anotação de Sequência Molecular , Proteogenômica/métodos , Esgotos/microbiologia
2.
Proteomics ; 16(5): 783-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621789

RESUMO

Metaproteomics--the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time--has provided new features to study complex microbial communities in order to unravel these "black boxes." New technical challenges arose that were not an issue for classical proteome analytics before that could be tackled by the application of different model systems. Here, we review different current and future model systems for metaproteome analysis. Following a short introduction to microbial communities and metaproteomics, we introduce model systems for clinical and biotechnological research questions including acid mine drainage, anaerobic digesters, and activated sludge. Model systems are useful to evaluate the challenges encountered within (but not limited to) metaproteomics, including species complexity and coverage, biomass availability, or reliable protein extraction. The implementation of model systems can be considered as a step forward to better understand microbial community responses and ecological functions of single member organisms. In the future, improvements are necessary to fully explore complex environmental systems by metaproteomics.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Proteoma/análise , Proteômica/métodos , Esgotos/microbiologia , Animais , Caenorhabditis elegans/genética , Ecossistema , Trato Gastrointestinal/microbiologia , Humanos
3.
Bioinformatics ; 31(11): 1771-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25618865

RESUMO

MOTIVATION: With the advent of meta-'omics' data, the use of metabolic networks for the functional analysis of microbial communities became possible. However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited. RESULTS: Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions. Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation. We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was conducted, and good agreement with our computational predictions was observed. We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities. The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data.


Assuntos
Bactérias/metabolismo , Naftalenos/metabolismo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Redes e Vias Metabólicas , Proteômica
4.
Proteomics ; 15(18): 3244-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122999

RESUMO

The physiological adaptation to stationary growth by Pseudomonas putida F1, a model organism for the degradation of aromatic compounds, was investigated by proteome-wide label-free quantification.The data unveiled that entrance to the stationary phase did not involve an abrupt switch within the P. putida F1 proteome, but rather an ongoing adaptation that started already during the mid-exponential growth phase. The proteomic adaptations involved a clear increase in amino acid degradation capabilities and a loss of transcriptional as well as translational capacity. The final entrance to the stationary phase was accompanied by increased oxidative stress protection, although the stress and stationary sigma factor RpoS increased in abundance already during mid-exponential growth. The results show that it is important to consider significant sample variations when exponentially growing cultures are studied alone or compared across proteomic or transcriptomic literature. All MS data have been deposited in the ProteomeXchange with identifier PXD001219 (http://proteomecentral.proteomexchange.org/dataset/PXD001219).


Assuntos
Proteínas de Bactérias/análise , Proteoma/análise , Proteômica/métodos , Pseudomonas putida/metabolismo , Pseudomonas putida/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Bases de Dados de Proteínas , Proteoma/química , Proteoma/metabolismo
5.
Proteomics ; 15(20): 3508-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201687

RESUMO

Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.


Assuntos
Metabolômica , Poluição por Petróleo , Proteômica , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Itália , Mar Mediterrâneo , Petróleo/toxicidade , Microbiologia da Água
6.
J Proteome Res ; 14(1): 72-81, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25317949

RESUMO

The newly identified functional amyloids in Pseudomonas (Fap) are associated with increased aggregation and biofilm formation in the opportunistic pathogen P. aeruginosa; however, whether this phenomenon can be simply ascribed to the mechanical properties of the amyloid fibrils remains undetermined. To gain a deeper understanding of the Fap-mediated biofilm formation, the physiological consequences of Fap expression were investigated using label-free protein quantification. The functional amyloids were found to not solely act as inert structural biofilm components. Their presence induced major changes in the global proteome of the bacterium. These included the lowered abundance of classical virulence factors such as elastase B and the secretion system of alkaline protease A. Amyloid-mediated biofilm formation furthermore increased abundance of the alginate and pyoverdine synthesis machinery, which turned P. aeruginosa PAO1 into an unexpected mucoid phenotype. The results imply a significant impact of functional amyloids on the physiology of P. aeruginosa with subsequent implications for biofilm formation and chronic infections.


Assuntos
Amiloide/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Humanos , Biossíntese de Proteínas , Proteômica
7.
J Proteome Res ; 14(2): 619-27, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25412983

RESUMO

We propose a joint experimental and theoretical approach to the automated reconstruction of elemental fluxes in microbial communities. While stable isotope probing of proteins (protein-SIP) has been successfully applied to study interactions and elemental carbon and nitrogen fluxes, the volume and complexity of mass spectrometric data in protein-SIP experiments pose new challenges for data analysis. Together with a flexible experimental setup, the novel bioinformatics tool MetaProSIP offers an automated high-throughput solution for a wide range of (13)C or (15)N protein-SIP experiments with special emphasis on the analysis of metaproteomic experiments where differential labeling of organisms can occur. The information calculated in MetaProSIP includes the determination of multiple relative isotopic abundances, the labeling ratio between old and new synthesized proteins, and the shape of the isotopic distribution. These parameters define the metabolic capacities and dynamics within the investigated microbial culture. MetaProSIP features a high degree of reproducibility, reliability, and quality control reporting. The ability to embed into the OpenMS framework allows for flexible construction of custom-tailored workflows. Software and documentation are available under an open-source license at www.openms.de/MetaProSIP.


Assuntos
Automação , Isótopos/metabolismo , Proteínas/metabolismo , Proteômica
8.
Appl Microbiol Biotechnol ; 99(22): 9635-49, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26177915

RESUMO

Poultry processing plants and slaughterhouses produce huge quantities of feathers and hair/bristle waste annually. These keratinaceous wastes are highly resistant to degradation. Onygena corvina, a non-pathogenic fungus, grows specifically on feathers, hooves, horn, and hair in nature. Hence, the proteases secreted by O. corvina are interesting in view of their potential relevance for industrial decomposition of keratinaceous wastes. We sequenced and assembled the genome of O. corvina and used a method called peptide pattern recognition to identify 73 different proteases. Comparative genome analysis of proteases in keratin-degrading and non-keratin-degrading fungi indicated that 18 putative secreted proteases from four protease families (M36, M35, M43, and S8) may be responsible for keratin decomposition. Twelve of the 18 predicted protease genes could be amplified from O. corvina grown on keratinaceous materials and were transformed into Pichia pastoris. One of the recombinant proteases belonging to the S8 family showed high keratin-degrading activity. Furthermore, 29 different proteases were identified by mass spectrometry in the culture broth of O. corvina grown on feathers and bristle. The culture broth was fractionated by ion exchange chromatography to isolate active fractions with five novel proteases belonging to three protease families (S8, M28, and M3). Enzyme blends composed of three of these five proteases, one from each family, showed high degree of degradation of keratin in vitro. A blend of novel proteases, such as those we discovered, could possibly find a use for degrading keratinaceous wastes and provide proteins, peptides, and amino acids as valuable ingredients for animal feed.


Assuntos
Genoma Fúngico , Queratinas/metabolismo , Onygenales/enzimologia , Onygenales/metabolismo , Peptídeo Hidrolases/metabolismo , Análise de Sequência de DNA , Cromatografia por Troca Iônica , Microbiologia Industrial , Onygenales/genética , Peptídeo Hidrolases/genética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Mol Cell Proteomics ; 12(8): 2060-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603340

RESUMO

The relative quantification of proteins is one of the major techniques used to elucidate physiological reactions. Because it allows one to avoid artifacts due to chemical labeling, the metabolic introduction of heavy isotopes into proteins and peptides is the preferred method for relative quantification. For eukaryotic cells, stable isotope labeling by amino acids in cell culture (SILAC) has become the gold standard and can be readily applied in a vast number of scenarios. In the microbial realm, with its highly versatile metabolic capabilities, SILAC is often not feasible, and the use of other (13)C or (15)N labeled substrates might not be practical. Here, the incorporation of heavy sulfur isotopes is shown to be a useful alternative. We introduce (34)S stable isotope labeling of amino acids for quantification and the corresponding tools required for spectra extraction and disintegration of the isotopic overlaps caused by the small mass shift. As proof of principle, we investigated the proteomic changes related to naphthalene degradation in P. fluorescens ATCC 17483 and uncovered a specific oxidative-stress-like response.


Assuntos
Proteínas de Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Naftalenos/metabolismo , Pseudomonas fluorescens/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Biodegradação Ambiental , Marcação por Isótopo , Proteômica , Isótopos de Enxofre
10.
Proteomics ; 14(21-22): 2535-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25116144

RESUMO

Metaproteomic studies of full-scale activated sludge systems require reproducible protein extraction methods. A systematic evaluation of three different extractions protocols, each in combination with three different methods of cell lysis, and a commercial kit were evaluated. Criteria used for comparison of each method included the extracted protein concentration and the number of identified proteins and peptides as well as their phylogenetic, cell localization and functional distribution and quantitative reproducibility. Furthermore, the advantage of using specific metagenomes and a 2-step database approach was illustrated. The results recommend a protocol for protein extraction from activated sludge based on the protein extraction reagent B-Per and bead beating. The data have been deposited to the ProteomeXchange with identifier PXD000862 (http://proteomecentral.proteomexchange.org/dataset/PXD000862).


Assuntos
Proteínas de Bactérias/isolamento & purificação , Esgotos/análise , Esgotos/microbiologia , Proteínas de Bactérias/análise , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
11.
Proteomics ; 13(18-19): 2910-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23616470

RESUMO

Current knowledge of the physiology and phylogeny of polycyclic aromatic hydrocarbon (PAH) degrading bacteria often relies on laboratory enrichments and isolations. In the present study, in situ microcosms consisting of activated carbon pellets (BACTRAP®s) were loaded with either (13) C-naphthalene or (13) C-fluorene and were subsequently exposed in the contaminant source and plume fringe region of a PAH-contaminated aquifer. Metaproteomic analysis and protein-stable isotope probing revealed Burkholderiales, Actinomycetales, and Rhizobiales as the most active microorganisms in the groundwater communities. Proteins identified of the naphthalene degradation pathway showed a relative (13) C isotope abundance of approximately 50 atom% demonstrating that the identified naphthalene-degrading bacteria gained at least 80% of their carbon by PAH degradation. Although the microbial community grown on the fluorene-BACTRAPs showed a structure similar to the naphthalene-BACTRAPs, the identification of fluorene degraders and degradation pathways failed in situ. In complementary laboratory microcosms, a clear enrichment in proteins related to Rhodococcus and possible fluorene degradation enzymes was observed. This result demonstrates the impact of laboratory conditions on microbial community structure and activity of certain species and underlines the need on in situ exploration of microbial community functions. In situ microcosms in combination with protein-stable isotope probing may be a significant tool for in situ identification of metabolic key players as well as degradation pathways.


Assuntos
Marcação por Isótopo , Metagenômica , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Fluorenos , Microbiota , Naftalenos/química , Naftalenos/metabolismo
12.
Proteomics ; 13(18-19): 2786-804, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23625762

RESUMO

Metaproteomics of microbial communities promises to add functional information to the blueprint of genes derived from metagenomics. Right from its beginning, the achievements and developments in metaproteomics were closely interlinked with metagenomics. In addition, the evaluation, visualization, and interpretation of metaproteome data demanded for the developments in bioinformatics. This review will give an overview about recent strategies to use genomic data either from public databases or organismal specific genomes/metagenomes to increase the number of identified proteins obtained by mass spectrometric measurements. We will review different published metaproteogenomic approaches in respect to the used MS pipeline and to the used protein identification workflow. Furthermore, different approaches of data visualization and strategies for phylogenetic interpretation of metaproteome data are discussed as well as approaches for functional mapping of the results to the investigated biological systems. This information will in the end allow a comprehensive analysis of interactions and interdependencies within microbial communities.


Assuntos
Bactérias/metabolismo , Biologia Computacional/métodos , Metagenômica/métodos , Microbiota/genética , Proteômica/métodos , Bactérias/genética , Sequência de Bases
13.
Int J Med Microbiol ; 303(8): 624-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161710

RESUMO

Vancomycin is one of the few remaining treatment options for multi resistant Staphylococcus aureus infections. Several transcriptomics and proteomics studies have investigated the bacterium's cellular response to vancomycin, but quantitative proteomic studies have been limited in the number of proteins and restricted to certain sub-cellular compartments so far. Here, we combined the enrichment of different proteomic sub-fractions with in vivo metabolic labeling and shotgun proteomics to analyze the vancomycin induced stress response. Quantitative data for approximately 1400 proteins could be obtained, covering the majority of cytosolic as well as membrane localized proteins, cell surface associated and extracellular proteins. Besides major adaptive processes induced by limited growth of the cells due to the sublethal vancomycin exposure, specific cellular responses are seen on proteome level, e.g. the specific increase of proteins synthesizing amino acids which are essential for the peptidoglycan synthesis or the decrease of most proteins with a virulence related function. Most important, the influence on regulatory targets of the two-component system VraSR as the main regulatory system known for cell wall stress as well as for global regulons like SigB and SaeR was detected.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/análise , Proteoma/análise , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Vancomicina/farmacologia , Staphylococcus aureus/fisiologia , Estresse Fisiológico
14.
Proteomics ; 12(1): 37-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106033

RESUMO

We introduce a universal metabolic labeling strategy using elemental heavy 36Sulfur (36S) called 36Sulfur stable isotope labeling of amino acids for quantification (SULAQ). In the proof of principle experiment, Pseudomonas putida KT2440 was grown in defined minimal medium with sodium benzoate or sodium succinate as the sole carbon and 32S- or 36S-sodium sulfate as the sole sulfur sources. Quantification using mass spectrometry resulted in 562 proteins with 1991 unique peptides. SULAQ technology can be a valuable alternative strategy for the quantitative comparisons in MS-based proteomics approaches characterizing bacterial and other biological samples in different growth conditions.


Assuntos
Aminoácidos/química , Marcação por Isótopo/métodos , Isótopos de Enxofre/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/química , Proteoma/química , Proteoma/metabolismo , Pseudomonas putida/metabolismo
15.
J Proteome Res ; 10(4): 1657-66, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21323324

RESUMO

Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.


Assuntos
Proteínas de Bactérias/química , Ferro/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteoma/análise , Proteínas de Bactérias/metabolismo , Cromatografia Líquida/métodos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo
16.
Protein Sci ; 30(9): 1854-1870, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075639

RESUMO

Cross seeding between amyloidogenic proteins in the gut is receiving increasing attention as a possible mechanism for initiation or acceleration of amyloid formation by aggregation-prone proteins such as αSN, which is central in the development of Parkinson's disease (PD). This is particularly pertinent in view of the growing number of functional (i.e., benign and useful) amyloid proteins discovered in bacteria. Here we identify two amyloidogenic proteins, Pr12 and Pr17, in fecal matter from PD transgenic rats and their wild type counterparts, based on their stability against dissolution by formic acid (FA). Both proteins show robust aggregation into ThT-positive aggregates that contain higher-order ß-sheets and have a fibrillar morphology, indicative of amyloid proteins. In addition, Pr17 aggregates formed in vitro showed significant resistance against FA, suggesting an ability to form highly stable amyloid. Treatment with proteinase K revealed a protected core of approx. 9 kDa. Neither Pr12 nor Pr17, however, affected αSN aggregation in vitro. Thus, amyloidogenicity does not per se lead to an ability to cross-seed fibrillation of αSN. Our results support the use of proteomics and FA to identify amyloidogenic protein in complex mixtures and suggests that there may be numerous functional amyloid proteins in microbiomes.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas de Bactérias/química , Microbioma Gastrointestinal/genética , Consórcios Microbianos/genética , Doença de Parkinson/microbiologia , Sequência de Aminoácidos , Amiloide/isolamento & purificação , Proteínas Amiloidogênicas/isolamento & purificação , Animais , Proteínas de Bactérias/isolamento & purificação , Benzotiazóis/química , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Endopeptidase K/química , Fezes/química , Fezes/microbiologia , Feminino , Formiatos/química , Humanos , Concentração de Íons de Hidrogênio , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregados Proteicos , Ratos , Ratos Transgênicos , Ureia/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
17.
Sci Rep ; 10(1): 10033, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572051

RESUMO

Huge quantities of keratinaceous waste are a substantial and almost totally unexploited protein resource which could be upgraded for use as high value-added products by efficient keratinolytic enzymes. In this study, we found that Bacillus sp. 8A6 can efficiently degrade chicken feather after 24 h growth. According to phylogenetic analysis, the strain (formerly identified as Bacillus pumilus 8A6) belongs to the B. pumilus species clade but it is more closely related to B. safensis. Hotpep predicted 233 putative proteases from Bacillus sp. 8A6 genome. Proteomic analysis of culture broths from Bacillus sp. 8A6 cultured on chicken feathers or on a mixture of bristles and hooves showed high abundance of proteins with functions related to peptidase activity. Five proteases (one from family M12, one from family S01A, two from family S08A and one from family T3) and four oligopeptide and dipeptide binding proteins were highly expressed when Bacillus sp. 8A6 was grown in keratin media compared to LB medium. This study is the first to report that bacterial proteases in families M12, S01A and T3 are involved in keratin degradation together with proteases from family S08.


Assuntos
Bacillus/enzimologia , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Bacillus/genética , Bacillus/metabolismo , Bacillus pumilus/enzimologia , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Galinhas , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Plumas/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Peptídeo Hidrolases/genética , Filogenia , Proteômica , Serina Proteases/genética , Serina Proteases/metabolismo
18.
Proteomes ; 7(2)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027192

RESUMO

The activated sludge in wastewater treatment plants (WWTP) designed for enhanced biological phosphorus removal (EBPR) experiences periodically changing nutrient and oxygen availability. Tetrasphaera is the most abundant genus in Danish WWTP and represents up to 20-30% of the activated sludge community based on 16S rRNA amplicon sequencing and quantitative fluorescence in situ hybridization analyses, although the genus is in low abundance in the influent wastewater. Here we investigated how Tetrasphaera can successfully out-compete most other microorganisms in such highly dynamic ecosystems. To achieve this, we analyzed the physiological adaptations of the WWTP isolate T. elongata str. LP2 during an aerobic to anoxic shift by label-free quantitative proteomics and NMR-metabolomics. Escherichia coli was used as reference organism as it shares several metabolic capabilities and is regularly introduced to wastewater treatment plants without succeeding there. When compared to E. coli, only minor changes in the proteome of T. elongata were observed after the switch to anoxic conditions. This indicates that metabolic pathways for anaerobic energy harvest were already expressed during the aerobic growth. This allows continuous growth of Tetrasphaera immediately after the switch to anoxic conditions. Metabolomics furthermore revealed that the substrates provided were exploited far more efficiently by Tetrasphaera than by E. coli. These results suggest that T. elongata prospers in the dynamic WWTP environment due to adaptation to the changing environmental conditions.

19.
Sci Rep ; 9(1): 12338, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451726

RESUMO

We set out to investigate the genetic adaptations of the marine fungus Paradendryphiella salina CBS112865 for degradation of brown macroalgae. We performed whole genome and transcriptome sequencing and shotgun proteomic analysis of the secretome of P. salina grown on three species of brown algae and under carbon limitation. Genome comparison with closely related terrestrial fungi revealed that P. salina had a similar but reduced CAZyme profile relative to the terrestrial fungi except for the presence of three putative alginate lyases from Polysaccharide Lyase (PL) family 7 and a putative PL8 with similarity to ascomycete chondroitin AC lyases. Phylogenetic and homology analyses place the PL7 sequences amongst mannuronic acid specific PL7 proteins from marine bacteria. Recombinant expression, purification and characterization of one of the PL7 genes confirmed the specificity. Proteomic analysis of the P. salina secretome when growing on brown algae, revealed the PL7 and PL8 enzymes abundantly secreted together with enzymes necessary for degradation of laminarin, cellulose, lipids and peptides. Our findings indicate that the basic CAZyme repertoire of saprobic and plant pathogenic ascomycetes, with the addition of PL7 alginate lyases, provide P. salina with sufficient enzymatic capabilities to degrade several types of brown algae polysaccharides.


Assuntos
Adaptação Fisiológica , Ascomicetos/enzimologia , Phaeophyceae/microbiologia , Polissacarídeo-Liases/metabolismo , Proteômica , Ascomicetos/genética , Biodegradação Ambiental , Carbono/metabolismo , Carbono/farmacologia , Parede Celular/metabolismo , Fermentação/efeitos dos fármacos , Genoma Fúngico , Ácidos Hexurônicos/metabolismo , Cinética , Funções Verossimilhança , Oxirredução , Filogenia , Polissacarídeo-Liases/química , Domínios Proteicos , Proteoma/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Açúcares/análise
20.
ISME J ; 13(8): 1933-1946, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30894691

RESUMO

Enhanced biological phosphorus removal (EBPR) is a globally important biotechnological process and relies on the massive accumulation of phosphate within special microorganisms. Candidatus Accumulibacter conform to the classical physiology model for polyphosphate accumulating organisms and are widely believed to be the most important player for the process in full-scale EBPR systems. However, it was impossible till now to quantify the contribution of specific microbial clades to EBPR. In this study, we have developed a new tool to directly link the identity of microbial cells to the absolute quantification of intracellular poly-P and other polymers under in situ conditions, and applied it to eight full-scale EBPR plants. Besides Ca. Accumulibacter, members of the genus Tetrasphaera were found to be important microbes for P accumulation, and in six plants they were the most important. As these Tetrasphaera cells did not exhibit the classical phenotype of poly-P accumulating microbes, our entire understanding of the microbiology of the EBPR process has to be revised. Furthermore, our new single-cell approach can now also be applied to quantify storage polymer dynamics in individual populations in situ in other ecosystems and might become a valuable tool for many environmental microbiologists.


Assuntos
Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Hibridização in Situ Fluorescente/métodos , Fósforo/metabolismo , Análise Espectral Raman/métodos , Actinobacteria/classificação , Actinobacteria/genética , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA