Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(15): 10411-10418, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567335

RESUMO

VP1 is the major coat protein of murine polyomavirus and forms virus-like particles (VLPs) in vitro. VLPs consist of 72 pentameric VP1 subunits held together by a terminal clamp structure that is further stabilized by disulfide bonds and chelation of calcium ions. Yeast-derived VLPs (yVLPs) assemble intracellularly in vivo during recombinant protein production. These in vivo assembled yVLPs differ in several properties from VLPs assembled in vitro from bacterially produced pentamers. We found several intermolecular disulfide linkages in yVLPs involving 5 of the 6 cysteines of VP1 (Cys(115)-Cys(20), Cys(12)-Cys(20), Cys(16)-Cys(16), Cys(12)/ Cys(16)-Cys(115), and Cys(274)-Cys(274)), indicating a highly coordinated disulfide network within the in vivo assembled particles involving the N-terminal region of VP1. Cryoelectron microscopy revealed structured termini not resolved in the published crystal structure of the bacterially expressed VLP that appear to clamp the pentameric subunits together. These structural features are probably the reason for the observed higher stability of in vivo assembled yVLPs compared with in vitro assembled bacterially expressed VLPs as monitored by increased thermal stability, higher resistance to trypsin cleavage, and a higher activation enthalpy of the disassembly reaction. This high stability is decreased following disassembly of yVLPs and subsequent in vitro reassembly, suggesting a role for cellular components in optimal assembly.


Assuntos
Proteínas do Capsídeo/química , Dissulfetos/química , Polyomavirus/química , Sequência de Aminoácidos , Capsídeo/química , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Cisteína/química , Temperatura Alta , Cinética , Kluyveromyces/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Polyomavirus/ultraestrutura , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Ribonuclease Pancreático/química , Tripsina/química , Ultracentrifugação , Vírion/química , Montagem de Vírus
2.
Biol Chem ; 395(7-8): 763-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24854537

RESUMO

Munc13 proteins are essential presynaptic regulators that mediate synaptic vesicle priming and play a role in the regulation of neuronal short-term synaptic plasticity. All four Munc13 isoforms share a common domain structure, including a calmodulin (CaM) binding site in their otherwise divergent N-termini. Here, we summarize recent results on the investigation of the CaM/Munc13 interaction. By combining chemical cross-linking, photoaffinity labeling, and mass spectrometry, we showed that all neuronal Munc13 isoforms exhibit similar CaM binding modes. Moreover, we demonstrated that the 1-5-8-26 CaM binding motif discovered in Munc13-1 cannot be induced in the classical CaM target skMLCK, indicating unique features of the Munc13 CaM binding motif.


Assuntos
Calmodulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Calmodulina/química , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Ligação Proteica , Conformação Proteica
3.
Anal Bioanal Chem ; 405(29): 9333-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24071896

RESUMO

Calmodulin (CaM) is a highly conserved intracellular Ca(2+)-binding protein that exerts important functions in many cellular processes. Prominent examples of CaM-regulated proteins are adenylyl cyclases (ACs), which synthesize cAMP as a central second messenger. The interaction of ACs with CaM represents the link between Ca(2+)-signaling and cAMP-signaling pathways. Thereby, different AC isoforms stimulated by CaM, comprise diverse mechanisms of regulation by the Ca(2+) sensor. To extend the structural information about the detailed mechanisms underlying the regulation of AC8 by CaM, we employed an integrated approach combining chemical cross-linking and mass spectrometry with two peptides representing the CaM-binding regions of AC8. These experiments reveal that the structures of CaM/AC8 peptide complexes are similar to that of the CaM/skeletal muscle myosin light chain kinase peptide complex where CaM is collapsed around the target peptide that binds to CaM in an antiparallel orientation. Cross-linking experiments were complemented by investigating the binding of AC8 peptides to CaM thermodynamically with isothermal titration calorimetry. There were no hints on a complex, in which both AC8 peptides bind simultaneously to CaM, refining our current understanding of the interaction between CaM and AC8.


Assuntos
Adenilil Ciclases/química , Calmodulina/química , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Bovinos , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica
4.
PLoS One ; 8(10): e75119, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130683

RESUMO

Among the neuronal binding partners of calmodulin (CaM) are Munc13 proteins as essential presynaptic regulators that play a key role in synaptic vesicle priming and are crucial for presynaptic short-term plasticity. Recent NMR structural investigations of a CaM/Munc13-1 peptide complex have revealed an extended structure, which contrasts the compact structures of most classical CaM/target complexes. This unusual binding mode is thought to be related to the presence of an additional hydrophobic anchor residue at position 26 of the CaM binding motif of Munc13-1, resulting in a novel 1-5-8-26 motif. Here, we addressed the question whether the 1-5-8-26 CaM binding motif is a Munc13-related feature or whether it can be induced in other CaM targets by altering the motif's core residues. For this purpose, we chose skeletal muscle myosin light chain kinase (skMLCK) with a classical 1-5-8-14 CaM binding motif and constructed three skMLCK peptide variants mimicking Munc13-1, in which the hydrophobic anchor amino acid at position 14 was moved to position 26. Chemical cross-linking between CaM and skMLCK peptide variants combined with high-resolution mass spectrometry yielded insights into the peptides' binding modes. This structural comparison together with complementary binding data from surface plasmon resonance experiments revealed that skMLCK variants with an artificial 1-5-8-26 motif cannot mimic CaM binding of Munc13-1. Apparently, additional features apart from the spacing of the hydrophobic anchor residues are required to define the functional 1-5-8-26 motif of Munc13-1. We conclude that Munc13 proteins display a unique CaM binding behavior to fulfill their role as efficient presynaptic calcium sensors over broad range of Ca(2+) concentrations.


Assuntos
Calmodulina/metabolismo , Espectrometria de Massas/métodos , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Calmodulina/química , Dicroísmo Circular , Dados de Sequência Molecular , Quinase de Cadeia Leve de Miosina/química , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas do Tecido Nervoso/química , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA