Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(13): 14164-14172, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789002

RESUMO

We present a passively mode-locked Yb:CALGO oscillator with harmonic repetition rate operation up to the third order. It is operated in the solitary regime with a fundamental roundtrip rate of 94 MHz and pulse durations between 200 fs and 600 fs. Harmonic operation was observed being stable for several days. The harmonic mode-locking regions are analyzed depending on intra-cavity dispersion. The transient pulsing dynamics converging to the stable harmonic modes is tracked and a theoretical model describing the pulse moving mechanisms is presented.

2.
Sci Adv ; 10(2): eadk2290, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38198559

RESUMO

Ultrafast science builds on dynamic compositions of precisely timed light pulses, and evolving groups of pulses are observed in almost every mode-locked laser. However, the underlying physics has rarely been controlled or used until now. Here, we demonstrate a general approach to control soliton motion inside a dual-comb laser and the programmable synthesis of ultrashort pulse patterns. Introducing single-pulse modulation inside an Er:fiber laser, we rapidly shift the timing between two temporally separated soliton combs. Their superposition outside the cavity yields ultrashort soliton sequences. On the basis of real-time spectral interferometry, we observe the deterministic switching of intersoliton separation arising from the interplay of attracting and repulsing forces via ultrafast nonlinearity and laser gain dynamics. Harnessing these insights, we demonstrate the high-speed all-optical synthesis of nano- to picosecond pump-probe delays and programmable free-form soliton trajectories. This concept may pave the way to a new class of all-optical delay generators for ultrafast measurements at unprecedented high tuning, cycling, and acquisition speeds.

3.
Nat Commun ; 13(1): 2066, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440623

RESUMO

Ultrafast atomic vibrations mediate heat transport, serve as fingerprints for chemical bonds and drive phase transitions in condensed matter systems. Light pulses shorter than the atomic oscillation period can not only probe, but even stimulate and control collective excitations. In general, such interactions are performed with free-propagating pulses. Here, we demonstrate intra-cavity excitation and time-domain sampling of coherent optical phonons inside an active laser oscillator. Employing real-time spectral interferometry, we reveal that Terahertz beats of Raman-active optical phonons are the origin of soliton bound-states - also termed "Soliton molecules" - and we resolve a coherent coupling mechanism of phonon and intra-cavity soliton motion. Concurring electronic and nuclear refractive nonlinearities generate distinct soliton trajectories and, effectively, enhance the time-domain Raman signal. We utilize the intrinsic soliton motion to automatically perform highspeed Raman spectroscopy of the intra-cavity crystal. Our results pinpoint the impact of Raman-induced soliton interactions in crystalline laser media and microresonators, and offer unique perspectives toward ultrafast nonlinear phononics by exploiting the coupling of atomic motion and solitons inside a cavity.

4.
Light Sci Appl ; 11(1): 5, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974517

RESUMO

Microscopic electric fields govern the majority of elementary excitations in condensed matter and drive electronics at frequencies approaching the Terahertz (THz) regime. However, only few imaging schemes are able to resolve sub-wavelength fields in the THz range, such as scanning-probe techniques, electro-optic sampling, and ultrafast electron microscopy. Still, intrinsic constraints on sample geometry, acquisition speed and field strength limit their applicability. Here, we harness the quantum-confined Stark-effect to encode ultrafast electric near-fields into colloidal quantum dot luminescence. Our approach, termed Quantum-probe Field Microscopy (QFIM), combines far-field imaging of visible photons with phase-resolved sampling of electric waveforms. By capturing ultrafast movies, we spatio-temporally resolve a Terahertz resonance inside a bowtie antenna and unveil the propagation of a Terahertz waveguide excitation deeply in the sub-wavelength regime. The demonstrated QFIM approach is compatible with strong-field excitation and sub-micrometer resolution-introducing a direct route towards ultrafast field imaging of complex nanodevices in-operando.

5.
ACS Photonics ; 8(8): 2234-2242, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476287

RESUMO

Spectrally resolved measurements of optical activity, such as circular dichroism (CD) and optical rotatory dispersion (ORD), are powerful tools to study chiroptical properties of (bio)molecular and nanoplasmonic systems. The wider utilization of these techniques, however, has been impeded by the bulky and slow design of conventional spectropolarimeters, which have been limited to a narrowband scanning approach for more than 50 years. In this work, we demonstrate broadband measurements of optical activity by combining a balanced detection scheme with interferometric Fourier-transform spectroscopy. The setup utilizes a linearly polarized light field that creates an orthogonally polarized weak chiral free-induction-decay field, along with a phase-locked achiral transmitted signal, which serves as the local oscillator for heterodyne amplification. By scanning the delay between the two fields with a birefringent common-path interferometer and recording their interferogram with a balanced detector that measures polarization rotation, broadband CD and ORD spectra are retrieved simultaneously with a Fourier transform. Using an incoherent thermal light source, we achieve state-of-the-art sensitivity for CD and ORD across a broad wavelength range in a remarkably simple setup. We further demonstrate the potential of our technique for highly sensitive measurements of glucose concentration and the real-time monitoring of ground-state chemical reactions. The setup also accepts broadband pulses and will be suitable for broadband transient optical activity spectroscopy and broadband optical activity imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA