Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2305228121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394215

RESUMO

We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.


Assuntos
Evolução Biológica , Liliaceae , Filogenia , Ecossistema , Cromossomos , Especiação Genética
2.
Mol Ecol ; 32(15): 4298-4312, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246603

RESUMO

As the global climate crisis continues, predictions concerning how wild populations will respond to changing climate conditions are informed by an understanding of how populations have responded and/or adapted to climate variables in the past. Changes in the local biotic and abiotic environment can drive differences in phenology, physiology, morphology and demography between populations leading to local adaptation, yet the molecular basis of adaptive evolution in wild non-model organisms is poorly understood. We leverage comparisons between two lineages of Calochortus venustus occurring along parallel transects that allow us to identify loci under selection and measure clinal variation in allele frequencies as evidence of population-specific responses to selection along climatic gradients. We identify targets of selection by distinguishing loci that are outliers to population structure and by using genotype-environment associations across transects to detect loci under selection from each of nine climatic variables. Despite gene flow between individuals of different floral phenotypes and between populations, we find evidence of ecological specialization at the molecular level, including genes associated with key plant functions linked to plant adaptation to California's Mediterranean climate. Single-nucleotide polymorphisms (SNPs) present in both transects show similar trends in allelic similarity across latitudes indicating parallel adaptation to northern climates. Comparisons between eastern and western populations across latitudes indicate divergent genetic evolution between transects, suggesting local adaptation to either coastal or inland habitats. Our study is among the first to show repeated allelic variation across climatic clines in a non-model organism.


Assuntos
Clima , Seleção Genética , Frequência do Gene/genética , Aclimatação , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único/genética , Variação Genética/genética
3.
Curr Opin Plant Biol ; 80: 102544, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759482

RESUMO

Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.


Assuntos
Tubérculos , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Tubérculos/genética , Tubérculos/anatomia & histologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/anatomia & histologia
4.
Appl Plant Sci ; 11(3): e11524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342170

RESUMO

Premise: We present approaches used to generate long-read Nanopore sequencing reads for the Liliales and demonstrate how modifications to standard protocols directly impact read length and total output. The goal is to help those interested in generating long-read sequencing data determine which steps may be necessary for optimizing output and results. Methods: Four species of Calochortus (Liliaceae) were sequenced. Modifications made to sodium dodecyl sulfate (SDS) extractions and cleanup protocols included grinding with a mortar and pestle, using cut or wide-bore tips, chloroform cleaning, bead cleaning, eliminating short fragments, and using highly purified DNA. Results: Steps taken to maximize read length can decrease overall output. Notably, the number of pores in a flow cell is correlated with the overall output, yet we did not see an association between the pore number and the read length or the number of reads produced. Discussion: Many factors contribute to the overall success of a Nanopore sequencing run. We showed the direct impact that several modifications to the DNA extraction and cleaning steps have on the total sequencing output, read size, and number of reads generated. We show a tradeoff between read length and the number of reads and, to a lesser extent, the total sequencing output, all of which are important factors for successful de novo genome assembly.

5.
Carbohydr Polym ; 98(1): 102-7, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23987322

RESUMO

The aim of this study was to characterize chayotextle starch films reinforced with cellulose (C) and cellulose nanoparticle (CN) (at concentrations of 0.3%, 0.5%, 0.8% and 1.2%), using thermal, mechanical, physicochemical, permeability, and water solubility tests. C was acid-treated to obtain CN. The films were prepared by casting; potato starch and C were used as the control. The solubility of the starch films decreased with the addition of C and CN compared with its respective film without C and CN. No statistical difference (α=0.05) was found in the films added with different concentrations of C and CN. In general, the mechanical properties were improved with the addition of C and CN, and higher values of tensile strength and elastic modulus were determined in the films reinforced with CN. The melting temperature and enthalpy increased with the addition of C and CN, and the values of both thermal parameters were higher in the films with CN than with C; the enthalpy value of the film decreased when the concentration of C or CN increased in the composite. Low concentration of C and CN is better distributed in the matrix film. The addition of C and CN in the starch films improved some mechanical, barrier, and functional properties.


Assuntos
Celulose/química , Cucurbitaceae/química , Nanopartículas/química , Tubérculos/química , Solanum tuberosum/química , Amido/química , Fenômenos Mecânicos , Permeabilidade , Solubilidade , Temperatura , Volatilização , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA