Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(13)2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31284667

RESUMO

Salinity stress limited the production in over 30% of irrigated crops and 7% of dryland agriculture worldwide. The objective was to evaluate the effects of NaCl-stress on the enzymatic activity in tomato. Two experiments were carried out in germination and early vegetative growth stages. The activity of proline and peroxidase of eight varieties (Missouri, Yaqui, Vita, Feroz, Rio Grande, Tropic, Ace, and Floradade) submitted to NaCl concentrations (0, 50, 100, 150 and 200 mM de NaCl) and the semi-quantitative activity of 19 enzymes APY ZYM® were measured under a completely randomized design with four replications. Data were analyzed using univariate-multivariate analysis of variance, Tukey's HSD (p = 0.05), canonical discriminant and cluster analysis. The results showed significant differences between varieties and NaCl in proline content. Proline increased as the NaCl concentration increased. Peroxidase did no show significant differences. Eight enzymes were included within the model to properly classify the varieties and NaCl. In shoots, varieties and NaCl showed that enzymatic activity was higher in the order of alkaline-phosphatase > leucine arylamidase > acid phosphatase > naphthol-AS-BI-phosphohydrolase > n-acetyl-ß-glucosaminidase > ß-galactosidase, while in roots was higher in the order of alkaline-phosphatase > naphthol-AS-BI-phosphohydrolase > acid phosphatase > n-acetyl-ß-glucosaminidase. Acid and alkali phosphatase, lipase, esterase, ß-galactosidase, and trypsin can be a potential biomarker for NaCl-stress tolerance in tomato.


Assuntos
Esterases/metabolismo , N-Glicosil Hidrolases/metabolismo , Peptídeo Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Biomarcadores , Análise por Conglomerados , Ativação Enzimática , Brotos de Planta/fisiologia , Prolina/metabolismo , Proteoma , Proteômica , Plântula/fisiologia
2.
BMC Plant Biol ; 15: 118, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25957869

RESUMO

BACKGROUND: Despite the ecological and socioeconomic importance of wild Capsicum annuum L., few investigations have been carried out to study basic characteristics. The peninsula of Baja California has a unique characteristic that it provides a high degree of isolation for the development of unique highly diverse endemic populations. The objective of this study was to evaluate for the first time the growth type, associated vegetation, morphometric traits in plants, in fruits and mineral content of roots, stems and leaves of three wild populations of Capsicum in Baja California, Mexico, near biosphere reserves. RESULTS: The results showed that the majority of plants of wild Capsicum annuum have a shrub growth type and were associated with communities consisting of 43 species of 20 families the most representative being Fabaceae, Cactaceae and Euphorbiaceae. Significant differences between populations were found in plant height, main stem diameter, beginning of canopy, leaf area, leaf average and maximum width, stems and roots dry weights. Coverage, leaf length and dry weight did not show differences. Potassium, sodium and zinc showed significant differences between populations in their roots, stems and leaves, while magnesium and manganese showed significant differences only in roots and stems, iron in stems and leaves, calcium in roots and leaves and phosphorus did not show differences. Average fruit weight, length, 100 fruits dry weight, 100 fruits pulp dry weight and pulp/seeds ratio showed significant differences between populations, while fruit number, average fruit fresh weight, peduncle length, fruit width, seeds per fruit and seed dry weight, did not show differences. CONCLUSIONS: We concluded that this study of traits of wild Capsicum, provides useful information of morphometric variation between wild populations that will be of value for future decision processes involved in the management and preservation of germplasm and genetic resources.


Assuntos
Capsicum/anatomia & histologia , Capsicum/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Ecossistema , Característica Quantitativa Herdável , Análise de Variância , Capsicum/fisiologia , Ecótipo , Frutas/anatomia & histologia , Frutas/metabolismo , Geografia , Umidade , México , Minerais/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Transpiração Vegetal , Chuva , Especificidade da Espécie , Luz Solar , Temperatura
3.
ScientificWorldJournal ; 2014: 810192, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25097888

RESUMO

Pseudomonas putida is plant growth promoting rhizobacteria (PGPR) that have the capacity to improve growth in plants. The purpose of this study was to determine growth and anthocyanin pigmentation of the bracts in two poinsettia Euphorbia pulcherrima cultivars (Prestige and Sonora Marble) using three strains of P. putida, as well as a mixture of the three (MIX). Comparison with the control group indicated for the most part that Prestige grew better than the Sonora Marble cultivars with the PGPR strains. Prestige with the MIX strain grew better compared to control for the number of cyathia (83 versus 70.4), volume of roots (45 versus 3 cm(3)), number of leaves (78 versus 58), and area of leaf (1,788 versus 1,331 cm(2)), except for the number of flowers (8.8 versus 11.6). To the naked eye, coloration of plants appeared identical in color compared to the control group. For all plants with P. putida strains, there was less anthocyanin pigment, but biomass was always greater with PGPR strains. Nevertheless, to the naked eye, the coloration of the plants appeared identical in color compared to the control group. This is the first study reporting the positive effects of P. putida rhizobacteria treatments on growth of poinsettia cultivars.


Assuntos
Antocianinas/metabolismo , Euphorbiaceae/microbiologia , Pseudomonas putida/fisiologia , Euphorbiaceae/crescimento & desenvolvimento , Euphorbiaceae/metabolismo , Pseudomonas putida/patogenicidade
4.
J Fungi (Basel) ; 9(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36983518

RESUMO

One of the most challenging aspects of long-term research based on microorganisms is the maintenance of isolates under ex situ conditions, particularly the conservation of phytopathological characteristics. Our research group has worked for more than 10 years with Gaumannomyces graminis var. tritici (Ggt), the main biotic factor affecting wheat. In this sense we preserved the microorganisms in oil overlaid. However, several strains preserved for a long time lost their pathogenicity. These strains show white and non-infective mycelia. In this sense, we hypothesized that this is attributable to low melanin content. Melanin is a natural pigment mainly involved in UV protection, desiccation, salinity, oxidation, and fungal pathogenicity. Therefore, understanding the melanin role on Ggt pathogenicity is fundamental to developing melanin activation strategies under laboratory studies. In this study, we induce melanin activation by UV-A light chamber, 320 to 400 nm (T1) and temperature changes of 30 °C, 15 °C, and 20 °C (T2). Fungal pathogenicity was evaluated by determination of blackening roots and Ggt was quantified by real-time PCR in inoculated wheat plants. Results revealed that Ggt grown under UV-A (T1) conditions showed around 40% higher melanin level with a concomitant effect on root infection (98% of blackened roots) and 4-fold more Ggt genome copy number compared with the control (non-infective mycelia) being T1, a more inductor factor compared with T2. These findings would support the role of melanin in pathogenicity in darkly pigmented fungi such as Ggt and could serve as a basis for activating pathogenicity under laboratory conditions.

5.
Plants (Basel) ; 12(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895983

RESUMO

Coffee leaf rust (CLR) is caused by the biotrophic fungus Hemileia vastatrix Berk. & Br., a disease of economic importance, reducing coffee yield up to 60%. Currently, CLR epidemics have negatively impacted food security. Therefore, the objective of the present research study is to show a current framework of this disease and its effects on diverse areas, as well as the biological systems used for its control, mode of action, and effectiveness. The use of essential plant oils and antagonistic microorganisms to H. vastatrix are highlighted. Terpenes, terpenoids, and aromatic compounds are the main constituents of these oils, which alter the cell wall and membrane composition and modify the basic cell functions. Beneficial microorganisms inhibit urediniospore germination and reduce disease incidence and severity. The antagonistic microorganisms and essential oils of some aromatic plants have great potential in agriculture. These biological systems may have more than one mechanism of action, which reduces the possibility of the emergence of resistant strains of H. vastatrix.

6.
Plants (Basel) ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501241

RESUMO

Synthetic fungicides have been the main control of phytopathogenic fungi. However, they cause harm to humans, animals, and the environment, as well as generating resistance in phytopathogenic fungi. In the last few decades, the use of microorganisms as biocontrol agents of phytopathogenic fungi has been an alternative to synthetic fungicide application. Actinomycetes isolated from terrestrial, marine, wetland, saline, and endophyte environments have been used for phytopathogenic fungus biocontrol. At present, there is a need for searching new secondary compounds and metabolites of different isolation sources of actinomycetes; however, little information is available on those isolated from other environments as biocontrol agents in agriculture. Therefore, the objective of this review is to compare the antifungal activity and the main mechanisms of action in actinomycetes isolated from different environments and to describe recent achievements of their application in agriculture. Although actinomycetes have potential as biocontrol agents of phytopathogenic fungi, few studies of actinomycetes are available of those from marine, saline, and wetland environments, which have equal or greater potential as biocontrol agents than isolates of actinomycetes from terrestrial environments.

7.
Plants (Basel) ; 11(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35736761

RESUMO

Cucumber fruit is rich in fiber, carbohydrates, protein, magnesium, iron, vitamin B, vitamin C, flavonoids, phenolic compounds, and antioxidants. Agrochemical-based production of cucumber has tripled yields; however, excessive synthetic fertilization has caused problems in the accumulation of salts in the soil and has increased production costs. The objective of this study was to evaluate the effect of three strains of plant growth-promoting rhizobacteria (PGPR) on cucumber fruit growth and quality under greenhouse conditions. The rhizobacteria Pseudomonas paralactis (KBendo6p7), Sinorhizobium meliloti (KBecto9p6), and Acinetobacter radioresistens (KBendo3p1) was adjusted to 1 × 108 CFU mL-1. The results indicated that the inoculation with PGPR improved plant height, stem diameter, root length, secondary roots, biomass, fruit size, fruit diameter, and yield, as well as nutraceutical quality and antioxidant capacity, significantly increasing the response of plants inoculated with A.radioresistens and S.meliloti in comparison to the control. In sum, our findings showed the potential functions of the use of beneficial bacteria such as PGPR for crop production to reduce costs, decrease pollution, and achieve world food safety and security.

8.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406891

RESUMO

The application of metallic nanoparticles improves the yield and content of bioactive compounds in plants. The aim of the present study was to determine the effects of the foliar application of copper nanoparticles (CuO-NPs) in the yield and content of bioactive compounds in lettuce. Different concentrations of CuO-NPs (0, 0.5, 1, 2, 4, and 6 mg mL-1) were applied in lettuce. The yield, nutraceutical quality, and enzymatic activity were determined. Foliar spraying of CuO-NPs induced an increase in the biosynthesis of bioactive compounds. In addition to an increase in the activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) in lettuce plants, there were no negative effects on yield. Therefore, with the application of CuO-NPs, better quality lettuces are produced for the human diet due to the higher production of bioactive compounds.

9.
Plants (Basel) ; 11(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35050074

RESUMO

The indiscriminate use of synthetic fungicides has led to negative impact to human health and to the environment. Thus, we investigated the effects of postharvest biocontrol treatment with Debaryomyces hansenii, Stenotrophomonas rhizophila, and a polysaccharide ulvan on fruit rot disease, storability, and antioxidant enzyme activity in muskmelon (Cucumis melo L. var. reticulatus). Each fruit was treated with (1) 1 × 106 cells mL-1 of D. hansenii, (2) 1 × 108 CFU mL-1 of S. rhizophila, (3) 5 g L-1 of ulvan, (4) 1 × 106 cells mL-1 of D. hansenii + 1 × 108 CFU mL-1 of S. rhizophila, (5) 1 × 108 CFU mL-1 of S. rhizophila + 5 g L-1 of ulvan, (6) 1 × 106 cells mL-1 of D. hansenii + 1 × 108 CFU mL-1 of S. rhizophila + 5 g L-1 of ulvan, (7) 1000 ppm of benomyl or sterile water (control). The fruits were air-dried for 2 h, and stored at 27 °C ± 1 °C and 85-90% relative humidity. The fruit rot disease was determined by estimating the disease incidence (%) and lesion diameter (mm), and the adhesion capacity of the biocontrol agents was observed via electron microscopy. Phytopathogen inoculation time before and after adding biocontrol agents were also recorded. Furthermore, the storability quality, weight loss (%), firmness (N), total soluble solids (%), and pH were quantified. The antioxidant enzymes including catalase, peroxidase, superoxide dismutase, and phenylalanine ammonium lyase were determined. In conclusion, the mixed treatment containing D. hansenii, S. rhizophila, and ulvan delayed fruit rot disease, preserved fruit quality, and increased antioxidant activity. The combined treatment is a promising and effective biological control method to promote the shelf life of harvested muskmelon.

10.
Plants (Basel) ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961112

RESUMO

Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global production. Phytopathogens control is performed with synthetic fungicides, but the application causes environmental contamination problems and human and animal health in addition to generating resistance. Yeasts are antagonist microorganisms that have been used in the last years as biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application for biocontrol of phytopathogens has been an effective action worldwide. This review explores the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phytopathogens, their relationship with OMIC sciences, and patents at the world level that involve yeast-based-products for their biocontrol.

11.
Antioxidants (Basel) ; 8(12)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771146

RESUMO

Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most important diseases in papaya fruit. Its control has been achieved with synthetic fungicides, but the application of marine bacteria and the sulphated polysaccharide ulvan (structural description: ß[1,4]-D-GlcA-α[1,4]-L-Rha 3 sulfate, ß[1,4]-L-IdoA-α[1,4]-L-Rha 3 sulfate, ß[1,4]-D-Xyl-α[1,4]-L-Rha 3 sulfate, and ß[1,4]-D-Xyl 2-sulfate-α[1,4]-L-Rha 3 sulfate) from Ulva sp. can be an alternative in the use of agrochemicals. Thus, the objective of this study was to assess the effect in vitro and in vivo of two marine bacteria, Stenotrophomonas rhizophila and Bacillus amyloliquefaciens, and ulvan in papaya fruit's bio-protection against C. gloeosporioides. The capacity of marine bacteria to inhibit mycelial growth and phytopathogen spore germination in vitro through volatile organic compounds (VOCs) and carbohydrate competition was evaluated. Fruit was inoculated with bacteria, ulvan, and C. gloeosporioides and incubated at 25 °C and 90% of relative humidity (RH) for seven days. Disease incidence (%), lesion diameter (mm), and antioxidant defense enzyme activity (such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were quantified. In vitro, C. gloeosporioides was inhibited by S. rhizophila and B. amyloliquefaciens. In vivo, disease incidence and the lesion diameter of anthracnose on papaya fruit were significantly reduced by marine bacteria and ulvan. Antioxidant defense enzyme activity played an important role in fruit bio-protection against C. gloeosporioides. The application of marine bacteria and ulvan can be an alternative in the sustainable postharvest management of papaya.

12.
Front Plant Sci ; 6: 549, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257756

RESUMO

Any improvement in agricultural systems that results in higher production should also reduce negative environmental impacts and enhance sustainability. The aim of this research was to investigate the effect of two different production systems, one open-field and the other shade-enclosure with four bocashi doses, in order to find the best environmental option in terms of yield, physiological and morphometric characteristics in one oregano (Origanum vulgare L.) cultivar. In this study a completely randomized block design was used with four replications and evaluated for photosynthetic and transpiration rate, stomatal conductance, chlorophyll, leaf area and temperature, aerial and roots fresh and dry biomass, fresh and dry yield. The results showed that oregano adapted best to the shade-enclosure with increase yield of fresh and dry leaf weight of 165% and 118%, respectively, when compared to open-field. Also, higher doses of bocashi improved yield in both environments but more so in shade-enclosure. Soil moisture retention was higher in shade-enclosure which was reflected in physiological variables for soil matric potential, transpiration, stomatal conductivity, photosynthesis being significantly higher in shade-enclosure compared to open-field, thus improving yield. It seems that oregano plants can be grown and perform better under shade-enclosure than open-field and bocashi is a suitable organic fertilizer.

13.
PLoS One ; 9(4): e94870, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736276

RESUMO

Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study.


Assuntos
Aloe/efeitos dos fármacos , Aloe/metabolismo , Minerais/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Aloe/crescimento & desenvolvimento , Aloe/fisiologia , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA