Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Chem ; 298(8): 102245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835216

RESUMO

Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. However, the crosstalk between glutamate and dopamine signaling has not been entirely elucidated. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIß. Using a combination of biochemical, pharmacological, neurophysiological, and behavioral approaches, we find that glutamate-dependent reduction in cyclin-dependent kinase 5 (Cdk5)-dependent RIIß phosphorylation alters the PKA holoenzyme autoinhibitory state to increase PKA signaling in response to dopamine. Furthermore, we show that disruption of RIIß phosphorylation by Cdk5 enhances cortico-ventral striatal synaptic plasticity. In addition, we demonstrate that acute and chronic stress in rats inversely modulate RIIß phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIß regulation by Cdk5 improves behavioral response to stress. We propose this new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Núcleo Accumbens , Estresse Fisiológico , Transmissão Sináptica , Animais , Corpo Estriado/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Glutamatos/metabolismo , Núcleo Accumbens/fisiologia , Ratos , Transdução de Sinais , Estresse Fisiológico/fisiologia
2.
Arch Biochem Biophys ; 689: 108436, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32492375

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated potassium (Kv) and cyclic nucleotide-gated (CNG) channels. HCN channels contain the glycine-tyrosine-glycine (GYG) sequence that forms part of the selectivity filter, a similar structure than some potassium channels; however, they permeate both sodium and potassium, giving rise to an inward current. Yet a second amino acid sequence, leucine-cysteine-isoleucine (LCI), next to GYG, is well-preserved in all HCNs but not in the selective potassium channels. In this study we used site-directed mutagenesis and electrophysiology in frog oocytes to determine whether the LCI sequence affects the kinetics of HCN2 currents. Permeability and voltage dependence were evaluated, and we found a role of LCI in the gating mechanism combined with changes in ion permeability. The I residue resulted critical to this function.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Ativação do Canal Iônico , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Permeabilidade , Potássio/metabolismo , Sódio/metabolismo , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
3.
J Neurochem ; 138(2): 317-27, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26998748

RESUMO

Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation. Moreover, TBI deregulates Ca(2+) -homeostasis triggering p25 production. The protein kinase Cdk5 is aberrantly activated by p25 leading to phosphorylation of substrates including tau and Rb protein. Loss of Cdk5 attenuates TBI lesion size, indicating that Cdk5 is a critical player in TBI pathogenesis and thus may be a suitable therapeutic target for TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Neurônios/metabolismo , Animais , Calpaína/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas tau/metabolismo
4.
Plants (Basel) ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999596

RESUMO

In Mexico, there is a deficit in the production of pine resin, because it relies on natural forests only. Therefore, it is necessary to select provenances and phenotypes of potential species such as P. oocarpa. The objective was to determine the difference between provenances and the variation in resin components and quality, as well as the effect of geographic and climatic factors. Resin from five provenances was collected from southern Mexico. The percentage of rosin, turpentine and water was obtained, as well as the acidity and saponification index. P. oocarpa resin had 80.94% rosin, 7.7% turpentine and 11.49% water. The saponification and acidity index was 125.47 and 117.49 mg KOH.g-1, respectively. All variables showed differences (p ≤ 0.0001) between provenances. The provenance contributed between 6.44 and 11.71% to the total variance, the error contributed between 88.29 and 93.56%. Geographic and climatic variables only had an effect on the percentage of turpentine; the correlation was negative with altitude and longitude, but positive with temperature and precipitation. The results allow defining seed collection sites for resin plantations and orienting the selection for a P. oocarpa improvement program.

5.
Brain Res ; 1815: 148461, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37308047

RESUMO

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by persistent deficits in social communication and social interaction. Altered synaptogenesis and aberrant connectivity responsible for social behavior and communication have been reported in autism pathogenesis. Autism has a strong genetic and heritable component; however, environmental factors including toxins, pesticides, infection and in utero exposure to drugs such as VPA have also been implicated in ASD. Administration of VPA during pregnancy has been used as a rodent model to study pathophysiological mechanisms involved in ASD, and in this study, we used the mouse model of prenatal exposure to VPA to assess the effects on striatal and dorsal hippocampus function in adult mice. Alterations in repetitive behaviors and shift habits were observed in mice prenatally exposed to VPA. In particular, such mice presented a better performance in learned motor skills and cognitive deficits in Y-maze learning frequently associated with striatal and hippocampal function. These behavioral changes were associated with a decreased level of proteins involved in the formation and maintenance of excitatory synapses, such as Nlgn-1 and PSD-95. In conclusion, motor skill abilities, repetitive behaviors, and impaired flexibility to shift habits are associated with reduced striatal excitatory synaptic function in the adult mouse prenatally exposed to VPA.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Camundongos , Animais , Ácido Valproico/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Comportamento Social , Modelos Animais de Doenças , Comportamento Animal
6.
Antioxidants (Basel) ; 12(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37891922

RESUMO

The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.

7.
Microorganisms ; 10(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35889011

RESUMO

Cerebral palsy (CP) in children constitutes a set of movement and body posture disorders caused by brain injury, which in turn is associated with a series of intestinal, respiratory, and malnutrition conditions. Twenty-four children were selected and included for the present study and subdivided into two groups: (1) children who included modern kefir (containing 12 probiotic species) in their diet; and (2) control group (not including kefir in their diet). The group supplemented with modern kefir received a beverage with multi probiotic species and the control group received commercial yogurt (which included the 2 typical lactic acid bacteria) for 7 weeks. Anthropometric variables, resting energy expenditure, presence, and diagnosis of functional digestive disorders (FDD), frequency of respiratory problems, presence of elevated C-reactive protein, differential count of leukocytes were evaluated. A significant increase in weight and height was found in the kefir group at the final time point. In addition, kefir intake promoted a significant reduction in functional constipation and stool hardness and increased the absolute value of blood lymphocytes. Since the fermented milk beverage modern kefir improves constipation, which is the most important FDD in children with CP and the nutritional and immune status, it could be considered an important strategy to improve health in these children.

8.
J Neurosci ; 30(34): 11326-36, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20739553

RESUMO

Neuronal synchronization in basal ganglia circuits plays a key role in the encoding of movement, procedural memory storage and habit formation. Striatal dopamine (DA) depletion during Parkinsonism causes abnormal synchronization in corticobasal ganglia loops resulting in motor dysfunction. However, the dynamics of the striatal microcircuit underlying abnormal synchronization in Parkinsonism is poorly understood. Here we used targeted whole-cell recordings, calcium imaging allowing the recording from dozens of cells simultaneously and analytical approaches, to describe the striking alterations in network dynamics that the striatal microcircuit undergoes following DA depletion in a rat model of Parkinson disease (PD): In addition to a significant enhancement of basal neuronal activity frequent periods of spontaneous synchronization were observed. Multidimensional reduction techniques of vectorized network dynamics revealed that increased synchronization resulted from a dominant network state that absorbed most spontaneously active cells. Abnormal synchronous activity can be virtually abolished by glutamatergic antagonists, while blockade of GABAergic transmission facilitates the engagement of striatal cell assemblies in the dominant state. Finally, a dopaminergic receptor agonist was capable of uncoupling neurons from the dominant state. Abnormal synchronization and "locking" into a dominant state may represent the basic neuronal mechanism that underlies movement disorders at the microcircuit level.


Assuntos
Corpo Estriado/metabolismo , Rede Nervosa/metabolismo , Doença de Parkinson/metabolismo , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Masculino , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Ratos , Ratos Wistar
9.
Biochem Biophys Rep ; 28: 101180, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917777

RESUMO

Calcium-activated chloride channels (CaCCs) play important roles in many physiological processes and their malfunction is implicated in diverse pathologies such as cancer, asthma, and hypertension. TMEM16A and TMEM16B proteins are the structural components of the CaCCs. Recent studies in cell cultures and animal models have demonstrated that pharmacological inhibition of CaCCs could be helpful in the treatment of some diseases, however, there are few specific modulators of these channels. CaCCs and Transient Receptor Potential Vanilloid-4 (TRPV4) channels are co-expressed in some tissues where they functionally interact. TRPV4 is activated by different stimuli and forms a calcium permeable channel that is activated by GSK1016790A and antagonized by GSK2193874. Here we report that GSK2193874 enhances the chloride currents mediated by TMEM16B expressed in HEK cells at nanomolar concentrations and that GSK1016790A enhances native CaCCs of Xenopus oocytes. Thus, these compounds may be used as a tool for the study of CaCCs, TRPV4 and their interactions.

10.
Cell Mol Neurobiol ; 30(8): 1243-50, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21061167

RESUMO

Spontaneously hypertensive rats (SHR) are widely used as model to investigate the pathophysiological mechanisms of essential hypertension. Catecholamine plasma levels are elevated in SHR, suggesting alterations of the sympathoadrenal axis. The residual hypertension in sympathectomized SHR is reduced after demedullation, suggesting a dysfunction of the adrenal medulla. Intact adrenal glands exposed to acetylcholine or high K+ release more catecholamine in SHR than in normotensive Wistar Kyoto (WKY) rats, and adrenal chromaffin cells (CCs) from SHR secrete more catecholamines than CCs from WKY rats. Since Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers exocytosis, alterations in the functional properties of these channels might underlie the enhanced catecholamine release in SHR. This study compares the electrophysiological properties of VGCC from CCs in acute adrenal slices from WKY rats and SHR at an early stage of hypertension. No significant differences were found in the macroscopic Ca2+ currents (current density, I­V curve, voltage dependence of activation and inactivation, kinetics) between CCs of SHR and WKY rats, suggesting that Ca2+ entry through VGCC is not significantly different between these strains, at least at early stages of hypertension. Ca2+ buffering, sequestration and extrusion mechanisms, as well as Ca2+ release from intracellular stores, must now be evaluated to determine if alterations in their function can explain the enhanced catecholamine secretion reported in CCs from SHR.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico , Animais , Comunicação Autócrina/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Níquel/farmacologia , Nifedipino/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA