Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Magn Reson Med ; 91(5): 2172-2187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174431

RESUMO

PURPOSE: The objective was to develop a fully automated algorithm that generates confidence maps to identify regions valid for analysis of quantitative proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ maps of the liver, generated with chemical shift-encoded MRI (CSE-MRI). Confidence maps are urgently needed for automated quality assurance, particularly with the emergence of automated segmentation and analysis algorithms. METHODS: Confidence maps for both PDFF and R 2 * $$ {R}_2^{\ast } $$ maps are generated based on goodness of fit, measured by normalized RMS error between measured complex signals and the CSE-MRI signal model. Based on Cramér-Rao lower bound and Monte-Carlo simulations, normalized RMS error threshold criteria were developed to identify unreliable regions in quantitative maps. Simulation, phantom, and in vivo clinical studies were included. To analyze the clinical data, a board-certified radiologist delineated regions of interest (ROIs) in each of the nine liver segments for PDFF and R 2 * $$ {R}_2^{\ast } $$ analysis in consecutive clinical CSE-MRI data sets. The percent area of ROIs in areas deemed unreliable by confidence maps was calculated to assess the impact of confidence maps on real-world clinical PDFF and R 2 * $$ {R}_2^{\ast } $$ measurements. RESULTS: Simulations and phantom studies demonstrated that the proposed algorithm successfully excluded regions with unreliable PDFF and R 2 * $$ {R}_2^{\ast } $$ measurements. ROI analysis by the radiologist revealed that 2.6% and 15% of the ROIs were placed in unreliable areas of PDFF and R 2 * $$ {R}_2^{\ast } $$ maps, as identified by confidence maps. CONCLUSION: A proposed confidence map algorithm that identifies reliable areas of PDFF and R 2 * $$ {R}_2^{\ast } $$ measurements from CSE-MRI acquisitions was successfully developed. It demonstrated technical and clinical feasibility.


Assuntos
Fígado , Prótons , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Imageamento por Ressonância Magnética
2.
Magn Reson Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725136

RESUMO

PURPOSE: To investigate the effect of particle size on liver R 2 * $$ {\mathrm{R}}_2^{\ast } $$ by Monte Carlo simulation and phantom studies at both 1.5 T and 3.0 T. METHODS: Two kinds of particles (i.e., iron sphere and fat droplet) with varying sizes were considered separately in simulation and phantom studies. MRI signals were synthesized and analyzed for predicting R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , based on simulations by incorporating virtual liver model, particle distribution, magnetic field generation, and proton movement into phase accrual. In the phantom study, iron-water and fat-water phantoms were constructed, and each phantom contained 15 separate vials with combinations of five particle concentrations and three particle sizes. R 2 * $$ {\mathrm{R}}_2^{\ast } $$ measurements in the phantom were made at both 1.5 T and 3.0 T. Finally, differences in R 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions or measurements were evaluated across varying particle sizes. RESULTS: In the simulation study, strong linear and positively correlated relationships were observed between R 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions and particle concentrations across varying particle sizes and magnetic field strengths ( r ≥ 0.988 $$ r\ge 0.988 $$ ). The relationships were affected by iron sphere size ( p < 0.001 $$ p<0.001 $$ ), where smaller iron sphere size yielded higher predicted R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , whereas fat droplet size had no effect on R 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions ( p ≥ 0.617 $$ p\ge 0.617 $$ ) for constant total fat concentration. Similarly, the phantom study showed that R 2 * $$ {\mathrm{R}}_2^{\ast } $$ measurements were relatively sensitive to iron sphere size ( p ≤ 0.004 $$ p\le 0.004 $$ ) unlike fat droplet size ( p ≥ 0.223 $$ p\ge 0.223 $$ ). CONCLUSION: Liver R 2 * $$ {\mathrm{R}}_2^{\ast } $$ is affected by iron sphere size, but is relatively unaffected by fat droplet size. These findings may lead to an improved understanding of the underlying mechanisms of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ relaxometry in vivo, and enable improved quantitative MRI phantom design.

3.
Magn Reson Med ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923009

RESUMO

PURPOSE: Quantitative T1 mapping has the potential to replace biopsy for noninvasive diagnosis and quantitative staging of chronic liver disease. Conventional T1 mapping methods are confounded by fat and B 1 + $$ {B}_1^{+} $$ inhomogeneities, resulting in unreliable T1 estimations. Furthermore, these methods trade off spatial resolution and volumetric coverage for shorter acquisitions with only a few images obtained within a breath-hold. This work proposes a novel, volumetric (3D), free-breathing T1 mapping method to account for multiple confounding factors in a single acquisition. THEORY AND METHODS: Free-breathing, confounder-corrected T1 mapping was achieved through the combination of non-Cartesian imaging, magnetization preparation, chemical shift encoding, and a variable flip angle acquisition. A subspace-constrained, locally low-rank image reconstruction algorithm was employed for image reconstruction. The accuracy of the proposed method was evaluated through numerical simulations and phantom experiments with a T1/proton density fat fraction phantom at 3.0 T. Further, the feasibility of the proposed method was investigated through contrast-enhanced imaging in healthy volunteers, also at 3.0 T. RESULTS: The method showed excellent agreement with reference measurements in phantoms across a wide range of T1 values (200 to 1000 ms, slope = 0.998 (95% confidence interval (CI) [0.963 to 1.035]), intercept = 27.1 ms (95% CI [0.4 54.6]), r2 = 0.996), and a high level of repeatability. In vivo imaging studies demonstrated moderate agreement (slope = 1.099 (95% CI [1.067 to 1.132]), intercept = -96.3 ms (95% CI [-82.1 to -110.5]), r2 = 0.981) compared to saturation recovery-based T1 maps. CONCLUSION: The proposed method produces whole-liver, confounder-corrected T1 maps through simultaneous estimation of T1, proton density fat fraction, and B 1 + $$ {B}_1^{+} $$ in a single, free-breathing acquisition and has excellent agreement with reference measurements in phantoms.

4.
J Magn Reson Imaging ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662618

RESUMO

BACKGROUND: Recent multicenter, multivendor MRI-based R2* vs. liver iron concentration (LIC) calibrations (i.e., MCMV calibrations) may facilitate broad clinical dissemination of R2*-based LIC quantification. However, these calibrations are based on a centralized offline R2* reconstruction, and their applicability with vendor-provided R2* maps is unclear. PURPOSE: To determine R2* ranges of agreement between the centralized and three MRI vendors' R2* reconstructions. STUDY TYPE: Prospective. SUBJECTS: Two hundred and seven subjects (mean age 37.6 ± 19.6 years; 117 male) with known or suspected iron overload from four academic medical centers. FIELD STRENGTH/SEQUENCE: Standardized multiecho spoiled gradient echo sequence at 1.5 T and 3.0 T for R2* mapping and a multiple spin-echo sequence at 1.5 T for LIC quantification. MRI vendors: GE Healthcare, Philips Healthcare, and Siemens Healthineers. ASSESSMENT: R2* maps were generated using both the centralized and vendor reconstructions, and ranges of agreement were determined. R2*-LIC linear calibrations were determined for each site, field strength, and reconstruction and compared with the MCMV calibrations. STATISTICAL TESTS: Bland-Altman analysis to determine ranges of agreement. Linear regression, analysis of covariance F tests, and Tukey's multiple comparison testing to assess reproducibility of calibrations across sites and vendors. A P value <0.05 was considered significant. RESULTS: The upper limits of R2* ranges of agreement were approximately 500, 375, and 330 s-1 for GE, Philips, and Siemens reconstructions, respectively, at 1.5 T and approximately 700 and 800 s-1 for GE and Philips, respectively, at 3.0 T. Within the R2* ranges of agreement, vendor R2*-LIC calibrations demonstrated high reproducibility (no significant differences between slopes or intercepts; P ≥ 0.06) and agreed with the MCMV calibrations (overlapping 95% confidence intervals). DATA CONCLUSION: Based on the determined upper limits, R2* measurements obtained from vendor-provided R2* maps may be reliably and practically used to quantify LIC less than approximately 8-13 mg/g using the MCMV calibrations and similar acquisition parameters as this study. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.

5.
MAGMA ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349454

RESUMO

OBJECTIVE: Performance assessments of quantitative determinations of proton density fat fraction (PDFF) have largely focused on the range between 0 and 50%. We evaluate PDFF in a two-site phantom study across the full 0-100% PDFF range. MATERIALS AND METHODS: We used commercially available 3D chemical-shift-encoded water-fat MRI sequences from three MRI system vendors at 1.5T and 3T and conducted the study across two sites. A spherical phantom housing 18 vials spanning the full 0-100% PDFF range was used. Data at each site were acquired using default parameters to determine same-day and different-day intra-scanner repeatability, and inter-system and inter-site reproducibility, in addition to linear regression between reference and measured PDFF values. RESULTS: Across all systems, results demonstrated strong linearity and minimal bias. For 1.5T systems, a pooled slope of 0.99 with a 95% confidence interval (CI) of 0.981-0.997 and a pooled intercept of 0.61% PDFF with a 95% CI of 0.17-1.04 were obtained. Results for pooled 3T data included a slope of 1.00 (95% CI 0.995-1.005) and an intercept of 0.69% PDFF (95% CI 0.39-0.97). Inter-site and inter-system reproducibility coefficients ranged from 2.9 to 6.2 (in units of PDFF), while intra-scanner same-day and different-day repeatability ranged from 0.6 to 7.8. DISCUSSION: PDFF across the 0-100% range can be reliably estimated using current commercial offerings at 1.5T and 3T.

6.
MAGMA ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896407

RESUMO

In this paper, we review the value of phantoms for body MRI in the context of their uses for quantitative MRI methods research, clinical trials, and clinical imaging. Certain uses of phantoms are common throughout the body MRI community, including measuring bias, assessing reproducibility, and training. In addition to these uses, phantoms in body MRI methods research are used for novel methods development and the design of motion compensation and mitigation techniques. For clinical trials, phantoms are an essential part of quality management strategies, facilitating the conduct of ethically sound, reliable, and regulatorily compliant clinical research of both novel MRI methods and therapeutic agents. In the clinic, phantoms are used for development of protocols, mitigation of cost, quality control, and radiotherapy. We briefly review phantoms developed for quantitative body MRI, and finally, we review open questions regarding the most effective use of a phantom for body MRI.

7.
Radiology ; 307(1): e221856, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809220

RESUMO

Accumulation of excess iron in the body, or systemic iron overload, results from a variety of causes. The concentration of iron in the liver is linearly related to the total body iron stores and, for this reason, quantification of liver iron concentration (LIC) is widely regarded as the best surrogate to assess total body iron. Historically assessed using biopsy, there is a clear need for noninvasive quantitative imaging biomarkers of LIC. MRI is highly sensitive to the presence of tissue iron and has been increasingly adopted as a noninvasive alternative to biopsy for detection, severity grading, and treatment monitoring in patients with known or suspected iron overload. Multiple MRI strategies have been developed in the past 2 decades, based on both gradient-echo and spin-echo imaging, including signal intensity ratio and relaxometry strategies. However, there is a general lack of consensus regarding the appropriate use of these methods. The overall goal of this article is to summarize the current state of the art in the clinical use of MRI to quantify liver iron content and to assess the overall level of evidence of these various methods. Based on this summary, expert consensus panel recommendations on best practices for MRI-based quantification of liver iron are provided.


Assuntos
Sobrecarga de Ferro , Fígado , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/patologia , Imageamento por Ressonância Magnética/métodos , Ferro , Biópsia
8.
Radiology ; 306(2): e213256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36194113

RESUMO

Background MRI is a standard of care tool to measure liver iron concentration (LIC). Compared with regulatory-approved R2 MRI, R2* MRI has superior speed and is available in most MRI scanners; however, the cross-vendor reproducibility of R2*-based LIC estimation remains unknown. Purpose To evaluate the reproducibility of LIC via single-breath-hold R2* MRI at both 1.5 T and 3.0 T with use of a multicenter, multivendor study. Materials and Methods Four academic medical centers using MRI scanners from three different vendors (three 1.5-T scanners, one 2.89-T scanner, and two 3.0-T scanners) participated in this prospective cross-sectional study. Participants with known or suspected liver iron overload were recruited to undergo multiecho gradient-echo MRI for R2* mapping at 1.5 T and 3.0 T (2.89 T or 3.0 T) on the same day. R2* maps were reconstructed from the multiecho images and analyzed at a single center. Reference LIC measurements were obtained with a commercial R2 MRI method performed using standardized 1.5-T spin-echo imaging. R2*-versus-LIC calibrations were generated across centers and field strengths using linear regression and compared using F tests. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic performance of R2* MRI in the detection of clinically relevant LIC thresholds. Results A total of 207 participants (mean age, 38 years ± 20 [SD]; 117 male participants) were evaluated between March 2015 and September 2019. A linear relationship was confirmed between R2* and LIC. All calibrations within the same field strength were highly reproducible, showing no evidence of statistically significant center-specific differences (P > .43 across all comparisons). Calibrations for 1.5 T and 3.0 T were generated, as follows: for 1.5 T, LIC (in milligrams per gram [dry weight]) = -0.16 + 2.603 × 10-2 R2* (in seconds-1); for 2.89 T, LIC (in milligrams per gram) = -0.03 + 1.400 × 10-2 R2* (in seconds-1); for 3.0 T, LIC (in milligrams per gram) = -0.03 + 1.349 × 10-2 R2* (in seconds-1). Liver R2* had high diagnostic performance in the detection of clinically relevant LIC thresholds (area under the ROC curve, >0.98). Conclusion R2* MRI enabled accurate and reproducible quantification of liver iron overload over clinically relevant ranges of liver iron concentration (LIC). The data generated in this study provide the necessary calibrations for broad clinical dissemination of R2*-based LIC quantification. ClinicalTrials.gov registration no.: NCT02025543 © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Sobrecarga de Ferro , Ferro , Masculino , Humanos , Adulto , Ferro/análise , Reprodutibilidade dos Testes , Estudos Prospectivos , Estudos Transversais , Fígado/química , Imageamento por Ressonância Magnética/métodos
9.
Magn Reson Med ; 89(6): 2186-2203, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656152

RESUMO

PURPOSE: Quantitative volumetric T1 mapping in the liver has the potential to aid in the detection, diagnosis, and quantification of liver fibrosis, inflammation, and spatially resolved liver function. However, accurate measurement of hepatic T1 is confounded by the presence of fat and inhomogeneous B 1 + $$ {B}_1^{+} $$ excitation. Furthermore, scan time constraints related to respiratory motion require tradeoffs of reduced volumetric coverage and/or increased acquisition time. This work presents a novel 3D acquisition and estimation method for confounder-corrected T1 measurement over the entire liver within a single breath-hold through simultaneous estimation of T1 , fat and B 1 + $$ {B}_1^{+} $$ . THEORY AND METHODS: The proposed method combines chemical shift encoded MRI and variable flip angle MRI with a B 1 + $$ {B}_1^{+} $$ mapping technique to enable confounder-corrected T1 mapping. The method was evaluated theoretically and demonstrated in both phantom and in vivo acquisitions at 1.5 and 3.0T. At 1.5T, the method was evaluated both pre- and post- contrast enhancement in healthy volunteers. RESULTS: The proposed method demonstrated excellent linear agreement with reference inversion-recovery spin-echo based T1 in phantom acquisitions at both 1.5 and 3.0T, with minimal bias (5.2 and 45 ms, respectively) over T1 ranging from 200-1200 ms. In vivo results were in general agreement with reference saturation-recovery based 2D T1 maps (SMART1 Map, GE Healthcare). CONCLUSION: The proposed 3D T1 mapping method accounts for fat and B 1 + $$ {B}_1^{+} $$ confounders through simultaneous estimation of T1 , B 1 + $$ {B}_1^{+} $$ , PDFF and R 2 * $$ {R}_2^{\ast } $$ . It demonstrates strong linear agreement with reference T1 measurements, with low bias and high precision, and can achieve full liver coverage in a single breath-hold.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Suspensão da Respiração , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/patologia , Cirrose Hepática , Reprodutibilidade dos Testes , Imagens de Fantasmas
10.
Magn Reson Med ; 89(4): 1418-1428, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36408802

RESUMO

PURPOSE: To validate QSM-based biomagnetic liver susceptometry (BLS) to measure liver iron overload at 1.5 T and 3.0 T using superconducting quantum interference devices (SQUID)-based BLS as reference. METHODS: Subjects with known or suspected iron overload were recruited for QSM-BLS at 1.5 T and 3.0 T using eight different protocols. SQUID-BLS was also obtained in each subject to provide susceptibility reference. A recent QSM method based on data-adaptive regularization was used to obtain susceptibility and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps. Measurements of susceptibility and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ were obtained in the right liver lobe. Linear mixed-effects analysis was used to estimate the contribution of specific acquisition parameters to QSM-BLS. Linear regression and Bland-Altman analyses were used to assess the relationship between QSM-BLS and SQUID-BLS/ R 2 * $$ {\mathrm{R}}_2^{\ast } $$ . RESULTS: Susceptibility maps showed high subjective quality for each acquisition protocol across different iron levels. High linear correlation was observed between QSM-BLS and SQUID-BLS at 1.5 T (r2 range, [0.82, 0.84]) and 3.0 T (r2 range, [0.77, 0.85]) across different acquisition protocols. QSM-BLS and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ were highly correlated at both field strengths (r2 range at 1.5 T, [0.94, 0.99]; 3.0 T, [0.93, 0.99]). High correlation (r2  = 0.99) between 1.5 T and 3.0 T QSM-BLS, with narrow reproducibility coefficients (range, [0.13, 0.21] ppm) were observed for each protocol. CONCLUSION: This work evaluated the feasibility and performance of liver QSM-BLS across iron levels and acquisition protocols at 1.5 T and 3.0 T. High correlation and reproducibility were observed between QSM-BLS and SQUID-BLS across protocols and field strengths. In summary, QSM-BLS may enable reliable and reproducible quantification of liver iron concentration.


Assuntos
Sobrecarga de Ferro , Ferro , Humanos , Animais , Ferro/análise , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Fígado/química , Decapodiformes
11.
Magn Reson Med ; 90(2): 385-399, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929781

RESUMO

PURPOSE: To improve repeatability and reproducibility across acquisition parameters and reduce bias in quantitative susceptibility mapping (QSM) of the liver, through development of an optimized regularized reconstruction algorithm for abdominal QSM. METHODS: An optimized approach to estimation of magnetic susceptibility distribution is formulated as a constrained reconstruction problem that incorporates estimates of the input data reliability and anatomical priors available from chemical shift-encoded imaging. The proposed data-adaptive method was evaluated with respect to bias, repeatability, and reproducibility in a patient population with a wide range of liver iron concentration (LIC). The proposed method was compared to the previously proposed and validated approach in liver QSM for two multi-echo spoiled gradient-recalled echo protocols with different acquisition parameters at 3T. Linear regression was used for evaluation of QSM methods against a reference FDA-approved R 2 $$ {R}_2 $$ -based LIC measure and R 2 ∗ $$ {R}_2^{\ast } $$ measurements; repeatability/reproducibility were assessed by Bland-Altman analysis. RESULTS: The data-adaptive method produced susceptibility maps with higher subjective quality due to reduced shading artifacts. For both acquisition protocols, higher linear correlation with both R 2 $$ {R}_2 $$ - and R 2 ∗ $$ {R}_2^{\ast } $$ -based measurements were observed for the data-adaptive method ( r 2 = 0 . 74 / 0 . 69 $$ {r}^2=0.74/0.69 $$ for R 2 $$ {R}_2 $$ , 0 . 97 / 0 . 95 $$ 0.97/0.95 $$ for R 2 ∗ $$ {R}_2^{\ast } $$ ) than the standard method ( r 2 = 0 . 60 / 0 . 66 $$ {r}^2=0.60/0.66 $$ and 0 . 79 / 0 . 88 $$ 0.79/0.88 $$ ). For both protocols, the data-adaptive method enabled better test-retest repeatability (repeatability coefficients 0.19/0.30 ppm for the data-adaptive method, 0.38/0.47 ppm for the standard method) and reproducibility across protocols (reproducibility coefficient 0.28 vs. 0.53ppm) than the standard method. CONCLUSIONS: The proposed data-adaptive QSM algorithm may enable quantification of LIC with improved repeatability/reproducibility across different acquisition parameters as 3T.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Fígado/química , Abdome , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
12.
Magn Reson Med ; 89(3): 908-921, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36404637

RESUMO

PURPOSE: To evaluate feasibility and reproducibility of liver diffusion-weighted (DW) MRI using cardiac-motion-robust, blood-suppressed, reduced-distortion techniques. METHODS: DW-MRI data were acquired at 3T in an anatomically accurate liver phantom including controlled pulsatile motion, in eight healthy volunteers and four patients with known or suspected liver metastases. Standard monopolar and motion-robust (M1-nulled, and M1-optimized) DW gradient waveforms were each acquired with single-shot echo-planar imaging (ssEPI) and multishot EPI (msEPI). In the motion phantom, apparent diffusion coefficient (ADC) was measured in the motion-affected volume. In healthy volunteers, ADC was measured in the left and right liver lobes separately to evaluate ADC reproducibility between the two lobes. Image distortions were quantified using the normalized cross-correlation coefficient, with an undistorted T2-weighted reference. RESULTS: In the motion phantom, ADC mean and SD in motion-affected volumes substantially increased with increasing motion for monopolar waveforms. ADC remained stable in the presence of increasing motion when using motion-robust waveforms. M1-optimized waveforms suppressed slow flow signal present with M1-nulled waveforms. In healthy volunteers, monopolar waveforms generated significantly different ADC measurements between left and right liver lobes ( p = 0 . 0078 $$ p=0.0078 $$ , reproducibility coefficients (RPC) =  470 × 1 0 - 6 $$ 470\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for monopolar-msEPI), while M1-optimized waveforms showed more reproducible ADC values ( p = 0 . 29 $$ p=0.29 $$ , RPC = 220 × 1 0 - 6 $$ \mathrm{RPC}=220\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for M1-optimized-msEPI). In phantom and healthy volunteer studies, motion-robust acquisitions with msEPI showed significantly reduced image distortion ( p < 0 . 001 $$ p<0.001 $$ ) compared to ssEPI. Patient scans showed reduction of wormhole artifacts when combining M1-optimized waveforms with msEPI. CONCLUSION: Synergistic effects of combined M1-optimized diffusion waveforms and msEPI acquisitions enable reproducible liver DWI with motion robustness, blood signal suppression, and reduced distortion.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias Hepáticas , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Movimento (Física) , Neoplasias Hepáticas/diagnóstico por imagem , Imagem Ecoplanar/métodos
13.
Osteoporos Int ; 34(12): 2077-2086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640844

RESUMO

Vertebral bone quality (VBQ) score is an opportunistic measure of bone mineral density using routine preoperative MRI in spine surgery. VBQ score positively correlates with age and is reproducible across serial scans. However, extrinsic factors, including MRI machine and protocol, affect the VBQ score and must be standardized. PURPOSE: The purposes of this study were to determine whether VBQ score increased with age and whether VBQ remained consistent across serial MRI studies obtained within 3 months. METHODS: This retrospective study evaluated 136 patients, age 20-69, who received two T1-weighted lumbar MRI within 3 months of each other between January 2011 and December 2021. VBQ(L1-4) score was calculated as the quotient of L1-L4 signal intensity (SI) and L3 cerebral spinal fluid (CSF) SI. VBQ(L1) score was calculated as the quotient of L1 SI and L1 CSF SI. Regression analysis was performed to determine correlation of VBQ(L1-4) score with age. Coefficient of variation (CV) was used to determine reproducibility between VBQ(L1-4) scores from serial MRI scans. RESULTS: One hundred thirty-six patients (mean ± SD age 44.9 ± 12.5 years; 53.7% female) were included in this study. Extrinsic factors affecting the VBQ score included patient age, MRI relaxation time, and specific MRI machine. When controlling for MRI relaxation/echo time, the VBQ(L1-4) score was positively correlated with age and had excellent reproducibility in serial MRI with CV of 0.169. There was excellent agreement (ICC > 0.9) of VBQ scores derived from the two formulas, VBQ(L1) and VBQ(L1-4). CONCLUSION: Extrinsic factors, including MRI technical factors and age, can impact the VBQ(L1-4) score and must be considered when using this tool to estimate bone mineral density (BMD). VBQ(L1-4) score was positively correlated with age. Reproducibility of the VBQ(L1-4) score across serial MRI is excellent especially when controlling for technical factors, supporting use of the VBQ score in estimating BMD. The VBQ(L1) score was a reliable alternative to the VBQ(L1-4) score.


Assuntos
Densidade Óssea , Vértebras Lombares , Humanos , Feminino , Lactente , Pré-Escolar , Adulto , Pessoa de Meia-Idade , Masculino , Vértebras Lombares/diagnóstico por imagem , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos
14.
J Magn Reson Imaging ; 58(2): 429-441, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36583550

RESUMO

BACKGROUND: There is an unmet need for fully automated image prescription of the liver to enable efficient, reproducible MRI. PURPOSE: To develop and evaluate artificial intelligence (AI)-based liver image prescription. STUDY TYPE: Prospective. POPULATION: A total of 570 female/469 male patients (age: 56 ± 17 years) with 72%/8%/20% assigned randomly for training/validation/testing; two female/four male healthy volunteers (age: 31 ± 6 years). FIELD STRENGTH/SEQUENCE: 1.5 T, 3.0 T; spin echo, gradient echo, bSSFP. ASSESSMENT: A total of 1039 three-plane localizer acquisitions (26,929 slices) from consecutive clinical liver MRI examinations were retrieved retrospectively and annotated by six radiologists. The localizer images and manual annotations were used to train an object-detection convolutional neural network (YOLOv3) to detect multiple object classes (liver, torso, and arms) across localizer image orientations and to output corresponding 2D bounding boxes. Whole-liver image prescription in standard orientations was obtained based on these bounding boxes. 2D detection performance was evaluated on test datasets by calculating intersection over union (IoU) between manual and automated labeling. 3D prescription accuracy was calculated by measuring the boundary mismatch in each dimension and percentage of manual volume covered by AI prescription. The automated prescription was implemented on a 3 T MR system and evaluated prospectively on healthy volunteers. STATISTICAL TESTS: Paired t-tests (threshold = 0.05) were conducted to evaluate significance of performance difference between trained networks. RESULTS: In 208 testing datasets, the proposed method with full network had excellent agreement with manual annotations, with median IoU > 0.91 (interquartile range < 0.09) across all seven classes. The automated 3D prescription was accurate, with shifts <2.3 cm in superior/inferior dimension for 3D axial prescription for 99.5% of test datasets, comparable to radiologists' interreader reproducibility. The full network had significantly superior performance than the tiny network for 3D axial prescription in patients. Automated prescription performed well across single-shot fast spin-echo, gradient-echo, and balanced steady-state free-precession sequences in the prospective study. DATA CONCLUSION: AI-based automated liver image prescription demonstrated promising performance across the patients, pathologies, and field strengths studied. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 1.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
15.
J Physiol ; 600(4): 847-868, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33724479

RESUMO

KEY POINTS: Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of ß-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to ß-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding ß-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.


Assuntos
Tecido Adiposo Marrom , Termogênese , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Humanos , Lipólise , Gordura Subcutânea/metabolismo , Termogênese/fisiologia
16.
Magn Reson Med ; 88(6): 2662-2678, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35968580

RESUMO

PURPOSE: The purpose of this work was to obtain precise tri-exponential intravoxel incoherent motion (IVIM) quantification in the liver using 2D (b-value and first-order motion moment [M1 ]) IVIM-DWI acquisitions and region of interest (ROI)-based fitting techniques. METHODS: Diffusion MRI of the liver was performed in 10 healthy volunteers using three IVIM-DWI acquisitions: conventional monopolar, optimized monopolar, and optimized 2D (b-M1 ). For each acquisition, bi-exponential and tri-exponential full, segmented, and over-segmented ROI-based fitting and a newly proposed blood velocity SDdistribution (BVD) fitting technique were performed to obtain IVIM estimates in the right and left liver lobes. Fitting quality was evaluated using corrected Akaike information criterion. Precision metrics (test-retest repeatability, inter-reader reproducibility, and inter-lobar agreement) were evaluated using Bland-Altman analysis, repeatability/reproducibility coefficients (RPCs), and paired sample t-tests. Precision was compared across acquisitions and fitting methods. RESULTS: High repeatability and reproducibility was observed in the estimations of the diffusion coefficient (Dtri  = [1.03 ± 0.11] × 10-3  mm2 /s; RPCs ≤ 1.34 × 10-4  mm2 /s), perfusion fractions (F1  = 3.19 ± 1.89% and F2  = 16.4 ± 2.07%; RPCs ≤ 2.51%), and blood velocity SDs (Vb,1  = 1.44 ± 0.14 mm/s and Vb,2  = 3.62 ± 0.13 mm/s; RPCs ≤ 0.41 mm/s) in the right liver lobe using the 2D (b-M1 ) acquisition in conjunction with BVD fitting. Using these methods, significantly larger (p < 0.01) estimates of Dtri and F1 were observed in the left lobe in comparison to the right lobe, while estimates of Vb,1 and Vb,2 demonstrated high interlobar agreement (RPCs ≤ 0.45 mm/s). CONCLUSIONS: The 2D (b-M1 ) IVIM-DWI data acquisition in conjunction with BVD fitting enables highly precise tri-exponential IVIM quantification in the right liver lobe.


Assuntos
Imagem de Difusão por Ressonância Magnética , Fígado , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Fígado/diagnóstico por imagem , Movimento (Física) , Perfusão , Reprodutibilidade dos Testes
17.
Magn Reson Med ; 87(6): 2724-2740, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092092

RESUMO

PURPOSE: To design a b value and first-order motion moment (M1 ) optimized data acquisition for repeatable intravoxel incoherent motion (IVIM) quantification in the liver. METHODS: Cramer-Rao lower bound optimization was performed to determine optimal monopolar and optimal 2D samplings of the b-M1 space based on noise performance. Monte Carlo simulations were used to evaluate the bias and variability in estimates obtained using the proposed optimal samplings and conventional monopolar sampling. Diffusion MRI of the liver was performed in 10 volunteers using 3 IVIM acquisitions: conventional monopolar, optimized monopolar, and b-M1 -optimized gradient waveforms (designed based on the optimal 2D sampling). IVIM parameter maps of diffusion coefficient, perfusion fraction, and blood velocity SD were obtained using nonlinear least squares fitting. Noise performance (SDs), stability (outlier percentage), and test-retest or scan-rescan repeatability (intraclass correlation coefficients) were evaluated and compared across acquisitions. RESULTS: Cramer-Rao lower bound and Monte Carlo simulations demonstrated improved noise performance of the optimal 2D sampling in comparison to monopolar samplings. Evaluating the designed b-M1 -optimized waveforms in healthy volunteers, significant decreases (p < 0.05) in the SDs and outlier percentages were observed for measurements of diffusion coefficient, perfusion fraction, and blood velocity SD in comparison to measurements obtained using monopolar samplings. Good-to-excellent repeatability (intraclass correlation coefficients ≥ 0.77) was observed for all 3 parameters in both the right and left liver lobes using the b-M1 -optimized waveforms. CONCLUSIONS: 2D b-M1 -optimized data acquisition enables repeatable IVIM quantification with improved noise performance. 2D acquisitions may advance the establishment of IVIM quantitative biomarkers for liver diseases.


Assuntos
Abdome , Imagem de Difusão por Ressonância Magnética , Humanos , Fígado/diagnóstico por imagem , Movimento (Física) , Perfusão
18.
Magn Reson Med ; 87(6): 2826-2838, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35122450

RESUMO

PURPOSE: Concomitant gradients induce phase errors that increase quadratically with distance from isocenter. This work proposes a complex-based fitting method that addresses concomitant gradient phase errors in chemical shift encoded (CSE) MRI estimation of proton density fat fraction (PDFF) and R2 * through joint estimation of pass-specific phase terms. This method is applicable to time-interleaved multi-echo gradient-echo acquisitions (i.e., multi-pass acquisitions) and does not require prior knowledge of gradient waveforms typically needed to address concomitant gradient phase errors. THEORY AND METHODS: A CSE-MRI spoiled gradient echo signal model, with pass-specific phase terms, is introduced for non-linear least squares estimation of PDFF and R2 * in the presence of concomitant gradient phase errors. Cramér-Rao lower bound analysis was used to determine noise performance tradeoffs of the proposed fitting method, which was then validated in both phantom and in vivo experiments. RESULTS: The proposed fitting method removed PDFF and R2 * estimation errors up to 12% and 10 s-1 , respectively, at ±12 cm off isocenter (S/I) in a water phantom. In healthy volunteers, PDFF and R2 * bias was reduced by ~10% (12 cm off-isocenter) and ~30 s-1 (16 cm off-isocenter), respectively. An evaluation in 29 clinical liver datasets demonstrated reduced PDFF bias and variability (8.4% improvement in the coefficient of variation), even with the imaging volume centered at isocenter. CONCLUSION: Concomitant gradient induced phase errors in multi-pass CSE-MRI acquisitions can result in PDFF and R2 * estimation biases away from isocenter. The proposed fitting method enables accurate PDFF and R2 * quantification in the presence of concomitant gradient phase errors without knowledge of imaging gradient waveforms.


Assuntos
Tecido Adiposo , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Prótons , Reprodutibilidade dos Testes
19.
Magn Reson Med ; 87(2): 597-613, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554595

RESUMO

PURPOSE: To evaluate the precision profile (repeatability and reproducibility) of quantitative STEAM-MRS and to determine the relationships between multiple MR biomarkers of chronic liver disease in subjects with iron overload at both 1.5 Tesla (T) and 3T. METHODS: MRS data were acquired in patients with known or suspected liver iron overload. Two STEAM-MRS sequences (multi-TE and multi-TE-TR) were acquired at both 1.5T and 3T (same day), including test-retest acquisition. Each acquisition enabled estimation of R1, R2, and FWHM (each separately for water and fat); and proton density fat fraction. The test-retest repeatability and reproducibility across acquisition modes (multi-TE vs. multi-TE-TR) of the estimates were evaluated using intraclass correlation coefficients, linear regression, and Bland-Altman analyses. Multi-parametric relationships between parameters at each field strength, across field strengths, and with liver iron concentration were also evaluated using linear and nonlinear regression. RESULTS: Fifty-six (n = 56) subjects (10 to 73 years, 37 males/19 females) were successfully recruited. Both STEAM-MRS sequences demonstrated good-to-excellent precision (intraclass correlation coefficient ≥ 0.81) for the quantification of R1water , R2water , FWHMwater , and proton density fat fraction at both 1.5T and 3T. Additionally, several moderate (R2 = 0.50 to 0.69) to high (R2 ≥ 0.70) correlations were observed between biomarkers, across field strengths, and with liver iron concentration. CONCLUSIONS: Over a broad range of liver iron concentration, STEAM-MRS enables rapid and precise measurement of multiple biomarkers of chronic liver disease. By evaluating the multi-parametric relationships between biomarkers, this work may advance the comprehensive MRS-based assessment of chronic liver disease and may help establish biomarkers of chronic liver disease.


Assuntos
Sobrecarga de Ferro , Imageamento por Ressonância Magnética , Feminino , Humanos , Sobrecarga de Ferro/diagnóstico por imagem , Fígado/diagnóstico por imagem , Masculino , Reprodutibilidade dos Testes , Análise Espectral
20.
Magn Reson Med ; 87(4): 1742-1757, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34775638

RESUMO

PURPOSE: To introduce proton density water fraction (PDWF) as a confounder-corrected (CC) MR-based biomarker of mammographic breast density, a known risk factor for breast cancer. METHODS: Chemical shift encoded (CSE) MR images were acquired using a low flip angle to provide proton density contrast from multiple echo times. Fat and water images, corrected for known biases, were produced by a six-echo CC CSE-MRI algorithm. Fibroglandular tissue (FGT) volume was calculated from whole-breast segmented PDWF maps at 1.5T and 3T. The method was evaluated in (1) a physical fat-water phantom and (2) normal volunteers. Results from two- and three-echo CSE-MRI methods were included for comparison. RESULTS: Six-echo CC-CSE-MRI produced unbiased estimates of the total water volume in the phantom (mean bias 3.3%) and was reproducible across protocol changes (repeatability coefficient [RC] = 14.8 cm3 and 13.97 cm3 at 1.5T and 3.0T, respectively) and field strengths (RC = 51.7 cm3 ) in volunteers, while the two- and three-echo CSE-MRI approaches produced biased results in phantoms (mean bias 30.7% and 10.4%) that was less reproducible across field strengths in volunteers (RC = 82.3 cm3 and 126.3 cm3 ). Significant differences in measured FGT volume were found between the six-echo CC-CSE-MRI and the two- and three-echo CSE-MRI approaches (p = 0.002 and p = 0.001, respectively). CONCLUSION: The use of six-echo CC-CSE-MRI to create unbiased PDWF maps that reproducibly quantify FGT in the breast is demonstrated. Further studies are needed to correlate this quantitative MR biomarker for breast density with mammography and overall risk for breast cancer.


Assuntos
Densidade da Mama , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA