Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Am Chem Soc ; 145(27): 14647-14659, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367935

RESUMO

Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.


Assuntos
Anticorpos Monoclonais , Neoplasias , Humanos , Carbocianinas/química , Anticorpos Monoclonais/química , Corantes Fluorescentes/química , Imagem Óptica
2.
J Surg Oncol ; 124(7): 1121-1127, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309885

RESUMO

BACKGROUND/OBJECTIVES: Nanobodies are the smallest biologic antigen-binding fragments derived from camelid-derived antibodies. Nanobodies effect a peak tumor signal within minutes of injection and present a novel opportunity for fluorescence-guided surgery (FGS). The present study demonstrates the efficacy of an anti-CEA nanobody conjugated to near-infrared fluorophore LICOR-IRDye800CW for rapid intraoperative tumor labeling of colon cancer. METHODS: LS174T human colon cancer cells or fragments of patient-derived colon cancer were implanted subcutaneously or orthotopically in nude mice. Anti-CEA nanobodies were conjugated with IRDye800CW and 1-3 nmol were injected intravenously. Mice were serially imaged over time. Peak fluorescence signal and tumor-to-background ratio (TBR) were recorded. RESULTS: Colon cancer tumors were detectable using fluorescent anti-CEA nanobody within 5 min of injection at all three doses. Maximal fluorescence intensity was observed within 15 min-3 h for all three doses with TBR values ranging from 1.3 to 2.3. In the patient-derived model of colon cancer, fluorescence was detectable with a TBR of 4.6 at 3 h. CONCLUSIONS: Fluorescent anti-CEA nanobodies rapidly and specifically labeled colon cancer in cell-line-based and patient-derived orthotopic xenograft (PDOX) models. The kinetics of nanobodies allow for same day administration and imaging. Anti-CEA-nb-800 is a promising and practical molecule for FGS of colon cancer.


Assuntos
Antígeno Carcinoembrionário/imunologia , Neoplasias do Colo/diagnóstico por imagem , Imagem Óptica , Anticorpos de Domínio Único , Animais , Modelos Animais de Doenças , Corantes Fluorescentes , Xenoenxertos , Humanos , Camundongos Nus , Neoplasias Experimentais
3.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316285

RESUMO

Since atherosclerotic plaques are small and sparse, their non-invasive detection via PET imaging requires both highly specific radiotracers as well as imaging systems with high sensitivity and resolution. This study aimed to assess the targeting and biodistribution of a novel fluorine-18 anti-VCAM-1 Nanobody (Nb), and to investigate whether sub-millimetre resolution PET imaging could improve detectability of plaques in mice. The anti-VCAM-1 Nb functionalised with the novel restrained complexing agent (RESCA) chelator was labelled with [18F]AlF with a high radiochemical yield (>75%) and radiochemical purity (>99%). Subsequently, [18F]AlF(RESCA)-cAbVCAM1-5 was injected in ApoE-/- mice, or co-injected with excess of unlabelled Nb (control group). Mice were imaged sequentially using a cross-over design on two different commercially available PET/CT systems and finally sacrificed for ex vivo analysis. Both the PET/CT images and ex vivo data showed specific uptake of [18F]AlF(RESCA)-cAbVCAM1-5 in atherosclerotic lesions. Non-specific bone uptake was also noticeable, most probably due to in vivo defluorination. Image analysis yielded higher target-to-heart and target-to-brain ratios with the ß-CUBE (MOLECUBES) PET scanner, demonstrating that preclinical detection of atherosclerotic lesions could be improved using the latest PET technology.


Assuntos
Anticorpos/administração & dosagem , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Anticorpos/química , Anticorpos/imunologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Radioisótopos de Flúor/química , Humanos , Injeções , Camundongos , Imagem Molecular , Placa Aterosclerótica/metabolismo , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
4.
Lancet Oncol ; 20(7): e354-e367, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267970

RESUMO

Real-time intraoperative guidance is essential during oncological surgery for complete and safe tumour resection. Fluorescence imaging in the near-infrared spectrum has shown potential for guiding surgeons during complex interventions. Recently, there has been a shift towards the use of fluorescence contrast agents for molecular imaging. The first targeted fluorescent agents, of which most consist of approved therapeutic antibodies conjugated to a fluorescent dye, have been evaluated in several early-phase clinical trials. Moreover, advances in protein engineering and drug design have led to the development of a variety of tracers suitable for molecular fluorescence image-guided surgery. In this Review, we discuss preclinical and clinical evidence, ongoing clinical trials, and the latest developments in the field of molecular near-infrared tracers for fluorescence-guided cancer surgery.


Assuntos
Fluorescência , Corantes Fluorescentes , Cuidados Intraoperatórios/métodos , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Cirurgia Assistida por Computador , Ensaios Clínicos como Assunto , Previsões , Humanos
5.
Biol Chem ; 400(3): 323-332, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30240352

RESUMO

Radiolabeling of nanobodies with radiometals by chelation has the advantage of being simple, fast and easy to implement in clinical routine. In this study, we validated 68Ga/111In-labeled anti-VCAM-1 nanobodies as potential radiometal-based tracers for molecular imaging of atherosclerosis. Both showed specific targeting of atherosclerotic lesions in ApoE-/- mice. Nevertheless, uptake in lesions and constitutively VCAM-1 expressing organs was lower than previously reported for the 99mTc-labeled analog. We further investigated the impact of different radiolabeling strategies on the in vivo biodistribution of nanobody-based tracers. Comparison of the pharmacokinetics between 68Ga-, 18F-, 111In- and 99mTc-labeled anti-VCAM-1 nanobodies showed highest specific uptake for 99mTc-nanobody at all time-points, followed by the 68Ga-, 111In- and 18F-labeled tracer. No correlation was found with the estimated number of radioisotopes per nanobody, and mimicking specific activity of other radiolabeling methods did not result in an analogous biodistribution. We also demonstrated specificity of the tracer using mice with a VCAM-1 knocked-down phenotype, while showing for the first time the in vivo visualization of a protein knock-down using intrabodies. Conclusively, the chosen radiochemistry does have an important impact on the biodistribution of nanobodies, in particular on the specific targeting, but differences are not purely due to the tracer's specific activity.


Assuntos
Aterosclerose/diagnóstico por imagem , Imagem Molecular , Anticorpos de Domínio Único/química , Molécula 1 de Adesão de Célula Vascular/imunologia , Animais , Radioisótopos de Gálio , Radioisótopos de Índio , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo
6.
Mol Pharm ; 14(4): 1145-1153, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28245129

RESUMO

Advances in optical imaging technologies have stimulated the development of near-infrared (NIR) fluorescently labeled targeted probes for use in image-guided surgery. As nanobodies have already proven to be excellent candidates for molecular imaging, we aimed in this project to design NIR-conjugated nanobodies targeting the tumor biomarker HER2 for future applications in this field and to evaluate the effect of dye and dye conjugation chemistry on their pharmacokinetics during development. IRDye800CW or IRdye680RD were conjugated either randomly (via lysines) or site-specifically (via C-terminal cysteine) to the anti-HER2 nanobody 2Rs15d. After verification of purity and functionality, the biodistribution and tumor targeting of the NIR-nanobodies were assessed in HER2-positive and -negative xenografted mice. Site-specifically IRDye800CW- and IRdye680RD-labeled 2Rs15d as well as randomly labeled 2Rs15d-IRDye680RD showed rapid tumor accumulation and low nonspecific uptake, resulting in high tumor-to-muscle ratios at early time points (respectively 6.6 ± 1.0, 3.4 ± 1.6, and 3.5 ± 0.9 for HER2-postive tumors at 3 h p.i., while <1.0 for HER2-negative tumors at 3 h p.i., p < 0.05). Contrarily, using the randomly labeled 2Rs15d-IRDye800CW, HER2-positive and -negative tumors could only be distinguished after 24 h due to high nonspecific signals. Moreover, both randomly labeled 2Rs15d nanobodies were not only cleared via the kidneys but also partially via the hepatobiliary route. In conclusion, near-infrared fluorescent labeling of nanobodies allows rapid, specific, and high contrast in vivo tumor imaging. Nevertheless, the fluorescent dye as well as the chosen conjugation strategy can affect the nanobodies' properties and consequently have a major impact on their pharmacokinetics.


Assuntos
Benzenossulfonatos/administração & dosagem , Indóis/administração & dosagem , Nanopartículas/metabolismo , Neoplasias/diagnóstico , Anticorpos de Domínio Único/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Feminino , Camundongos , Camundongos Nus , Imagem Molecular/métodos , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cirurgia Assistida por Computador/métodos
7.
Biomacromolecules ; 18(3): 994-1001, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28192660

RESUMO

Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH2, which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.


Assuntos
Preparações de Ação Retardada/química , Hidrogéis/química , Peptídeos/química , Estabilidade Proteica , Animais , Sistemas de Liberação de Medicamentos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Polietilenoglicóis/química , Conformação Proteica
8.
Acta Cardiol ; 72(5): 537-546, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28657494

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) is currently the most common heart valve disease worldwide and is known to be an active process. Both renal failure and dyslipidaemia are considered to be promoting factors for the development of valvular calcifications. The aim of this study is to prospectively evaluate the respective contribution and interaction of renal failure and dyslipidaemia on CAVD in a rat model, using echocardiography and compared with histology. METHODS AND RESULTS: Sixty-eight male Wistar rats were prospectively divided in eight groups, each fed a different diet to induce renal failure alone and combined with hyperlipidaemia or hypercholesterolemia. CAVD was detected and quantified by calibrated integrated backscatter of ultrasound (cIB) and compared with the histological calcium score. The study follow-up was 20 weeks. At the end of the study, the cIB value and the calcium score of the aortic valve were significantly increased in the group with isolated renal failure but not with dyslipidaemia. The combination of renal failure with high cholesterol or high-fat diet did not significantly increase calcifications further. CONCLUSIONS: Renal failure alone does induce aortic valve calcifications in a rat model of CAVD, whereas dyslipidaemia alone does not. The combination of renal failure with dyslipidaemia does not increase calcification further. These findings suggest that a combination of atherosclerotic and calcifying factors is not required to induce aortic valve calcifications in this model.


Assuntos
Valva Aórtica , Calcinose , Dislipidemias/sangue , Doenças das Valvas Cardíacas , Insuficiência Renal , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Calcinose/diagnóstico , Calcinose/etiologia , Calcinose/patologia , Correlação de Dados , Modelos Animais de Doenças , Ecocardiografia/métodos , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/patologia , Ratos , Ratos Wistar , Insuficiência Renal/complicações , Insuficiência Renal/diagnóstico
9.
Blood ; 124(4): 555-66, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24928860

RESUMO

The interplay between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells performs a crucial role in MM pathogenesis by secreting growth factors, cytokines, and extracellular vesicles. Exosomes are membranous vesicles 40 to 100 nm in diameter constitutively released by almost all cell types, and they mediate local cell-to-cell communication by transferring mRNAs, miRNAs, and proteins. Although BMSC-induced growth and drug resistance of MM cells has been studied, the role of BMSC-derived exosomes in this action remains unclear. Here we investigate the effect of BMSC-derived exosomes on the viability, proliferation, survival, migration, and drug resistance of MM cells, using the murine 5T33MM model and human MM samples. BMSCs and MM cells could mutually exchange exosomes carrying certain cytokines. Both naive and 5T33 BMSC-derived exosomes increased MM cell growth and induced drug resistance to bortezomib. BMSC-derived exosomes also influenced the activation of several survival relevant pathways, including c-Jun N-terminal kinase, p38, p53, and Akt. Exosomes obtained from normal donor and MM patient BMSCs also induced survival and drug resistance of human MM cells. Taken together, our results demonstrate the involvement of exosome-mediated communication in BMSC-induced proliferation, migration, survival, and drug resistance of MM cells.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Comunicação Celular , Resistencia a Medicamentos Antineoplásicos , Exossomos/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Células Estromais/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Ácidos Borônicos/farmacologia , Bortezomib , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Doxorrubicina/farmacologia , Citometria de Fluxo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/farmacologia , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Bioconjug Chem ; 25(11): 1963-70, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25265437

RESUMO

Current methods for sentinel lymph node (SLN) mapping involve the use of radioactivity detection with technetium-99m sulfur colloid and/or visually guided identification using a blue dye. To overcome the kinetic variations of two individual imaging agents through the lymphatic system, we report herein on two multifunctional macromolecules, 5a and 6a, that contain a radionuclide ((99m)Tc or (68)Ga) and a near-infrared (NIR) reporter for pre- and/or intraoperative SLN mapping by nuclear and NIR optical imaging techniques. Both bimodal probes are dextran-based polymers (10 kDa) functionalized with pyrazole-diamine (Pz) or 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelating units for labeling with fac-[(99m)Tc(CO)3](+) or (68)Ga(III), respectively, mannose units for receptor targeting, and NIR fluorophore units for optical imaging. The probes allowed a clear visualization of the popliteal node by single-photon emission computed tomography (SPECT/CT) or positron emission tomography (PET/CT), as well as real-time optically guided excision. Biodistribution studies confirmed that both macromolecules present a significant accumulation in the popliteal node (5a: 3.87 ± 0.63% IA/organ; 6a: 1.04 ± 0.26% IA/organ), with minimal spread to other organs. The multifunctional nanoplatforms display a popliteal extraction efficiency >90%, highlighting their potential to be further explored as dual imaging agents.


Assuntos
Dextranos/química , Raios Infravermelhos , Linfonodos/diagnóstico por imagem , Manose/química , Imagem Óptica/métodos , Animais , Dextranos/farmacocinética , Feminino , Radioisótopos de Gálio , Período Intraoperatório , Marcação por Isótopo , Linfonodos/cirurgia , Radiografia , Cintilografia , Ratos , Ratos Wistar
11.
Circ Res ; 110(7): 927-37, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22461363

RESUMO

RATIONALE: A noninvasive tool allowing the detection of vulnerable atherosclerotic plaques is highly needed. By combining nanomolar affinities and fast blood clearance, nanobodies represent potential radiotracers for cardiovascular molecular imaging. Vascular cell adhesion molecule-1 (VCAM1) constitutes a relevant target for molecular imaging of atherosclerotic lesions. OBJECTIVE: We aimed to generate, radiolabel, and evaluate anti-VCAM1 nanobodies for noninvasive detection of atherosclerotic lesions. METHODS AND RESULTS: Ten anti-VCAM1 nanobodies were generated, radiolabeled with technetium-99m, and screened in vitro on mouse and human recombinant VCAM1 proteins and endothelial cells and in vivo in apolipoprotein E-deficient (ApoE(-/-)) mice. A nontargeting control nanobody was used in all experiments to demonstrate specificity. All nanobodies displayed nanomolar affinities for murine VCAM1. Flow cytometry analyses using human human umbilical vein endothelial cells indicated murine and human VCAM1 cross-reactivity for 6 of 10 nanobodies. The lead compound cAbVCAM1-5 was cross-reactive for human VCAM1 and exhibited high lesion-to-control (4.95±0.85), lesion-to-heart (8.30±1.11), and lesion-to-blood ratios (4.32±0.48) (P<0.05 versus control C57Bl/6J mice). Aortic arch atherosclerotic lesions of ApoE(-/-) mice were successfully identified by single-photon emission computed tomography imaging. (99m)Tc-cAbVCAM1-5 binding specificity was demonstrated by in vivo competition experiments. Autoradiography and immunohistochemistry further confirmed cAbVCAM1-5 uptake in VCAM1-positive lesions. CONCLUSIONS: The (99m)Tc-labeled, anti-VCAM1 nanobody cAbVCAM1-5 allowed noninvasive detection of VCAM1 expression and displayed mouse and human cross-reactivity. Therefore, this study demonstrates the potential of nanobodies as a new class of radiotracers for cardiovascular applications. The nanobody technology might evolve into an important research tool for targeted imaging of atherosclerotic lesions and has the potential for fast clinical translation.


Assuntos
Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Endotélio Vascular/metabolismo , Imagem Molecular/métodos , Traçadores Radioativos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/patologia , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Radioimunodetecção/métodos , Compostos Radiofarmacêuticos , Tecnécio
12.
Eur J Pharm Biopharm ; 196: 114183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246566

RESUMO

Monoclonal antibodies (mAbs) targeting the immune checkpoint axis, which contains the programmed cell death protein-1 (PD-1) and its ligand PD-L1, revolutionized the field of oncology. Unfortunately, the large size of mAbs and the presence of an Fc fraction limit their tumor penetrative capacities and support off-target effects, potentially resulting in unresponsive patients and immune-related adverse events (irAEs) respectively. Single-domain antibodies (sdAbs) are ten times smaller than conventional mAbs and represent an emerging antibody subclass that has been proposed as next generation immune checkpoint inhibitor (ICI) therapeutics. They demonstrate favorable characteristics, such as an excellent stability, high antigen-binding affinity and an enhanced tumor penetration. Because sdAbs have a short half-life, methods to prolong their presence in the circulation and at the target site might be necessary in some cases to unfold their full therapeutic potential. In this study, we investigated a peptide-based hydrogel as an injectable biomaterial depot formulation for the sustained release of the human PD-L1 sdAb K2. We showed that a hydrogel composed of the amphipathic hexapeptide hydrogelator H-FQFQFK-NH2 prolonged the in vivo release of K2 after subcutaneous (s.c.) injection, up to at least 72 h, as monitored by SPECT/CT and fluorescence imaging. Additionally, after encapsulation in the hydrogel and s.c. administration, a significantly extended systemic presence and tumor uptake of K2 was observed in mice bearing a melanoma tumor expressing human PD-L1. Altogether, this study describes how peptide hydrogels can be exploited to provide the sustained release of sdAbs, thereby potentially enhancing its clinical and therapeutic effects.


Assuntos
Melanoma , Anticorpos de Domínio Único , Humanos , Animais , Camundongos , Preparações de Ação Retardada , Antígeno B7-H1/metabolismo , Hidrogéis , Peptídeos/química , Anticorpos Monoclonais/uso terapêutico , Melanoma/tratamento farmacológico
13.
Adv Sci (Weinh) ; : e2400700, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845188

RESUMO

Fluorescence molecular imaging plays a vital role in image-guided surgery. In this context, the urokinase plasminogen activator receptor (uPAR) is an interesting biomarker enabling the detection and delineation of various tumor types due to its elevated expression on both tumor cells and the tumor microenvironment. In this study, anti-uPAR Nanobodies (Nbs) are generated through llama immunization with human and murine uPAR protein. Extensive in vitro characterization and in vivo testing with radiolabeled variants are conducted to assess their pharmacokinetics and select lead compounds. Subsequently, the selected Nbs are converted into fluorescent agents, and their application for fluorescence-guided surgery is evaluated in various subcutaneous and orthotopic tumor models. The study yields a panel of high-affinity anti-uPAR Nbs, showing specific binding across multiple types of cancer cells in vitro and in vivo. Lead fluorescently-labeled compounds exhibit high tumor uptake with high contrast at 1 h after intravenous injection across all assessed uPAR-expressing tumor models, outperforming a non-targeting control Nb. Additionally, rapid and accurate tumor localization and demarcation are demonstrated in an orthotopic human glioma model. Utilizing these Nbs can potentially enhance the precision of surgical tumor resection and, consequently, improve survival rates in the clinic.

14.
Animals (Basel) ; 13(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627373

RESUMO

According to the EU Directive 2010/63, all animal procedures must be classified as non-recovery, mild, moderate or severe. Several examples are included in the Directive to help in severity classification. Since the implementation of the Directive, different publications and guidelines have been disseminated on the topic. However, due to the large variety of disease models and animal procedures carried out in many different animal species, guidance on the severity classification of specific procedures or models is often lacking or not specific enough. The latter is especially the case in disease models where the level of pain, suffering, distress and lasting harm depends on the duration of the study (for progressive disease models) or the dosage given (for infectious or chemically induced disease models). This, in turn, may lead to inconsistencies in severity classification between countries, within countries and even within institutions. To overcome this, two Belgian academic institutions with a focus on biomedical research collaborated to develop a severity classification for all the procedures performed. This work started with listing all in-house procedures and assigning them to 16 (sub)categories. First, we determined which parameters, such as clinical signs, dosage or duration, were crucial for severity classification within a specific (sub)category. Next, a severity classification was assigned to the different procedures, which was based on professional judgment by the designated veterinarians, members of the animal welfare body (AWB) and institutional animal ethics committee (AEC), integrating the available literature and guidelines. During the classification process, the use of vague terminology, such as 'minor impact', was avoided as much as possible. Instead, well-defined cut-offs between severity levels were used. Furthermore, we sought to define common denominators to group procedures and to be able to classify new procedures more easily. Although the primary aim is to address prospective severity, this can also be used to assess actual severity. In summary, we developed a severity classification for all procedures performed in two academic, biomedical institutions. These include many procedures and disease models in a variety of animal species for which a severity classification was not reported so far, or the terms that assign them to a different severity were too vague.

15.
Front Immunol ; 14: 1285923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035094

RESUMO

Intra-operative fluorescence imaging has demonstrated its ability to improve tumor lesion identification. However, the limited tissue penetration of the fluorescent signals hinders the detection of deep-lying or occult lesions. Integrating fluorescence imaging with SPECT and/or intra-operative gamma-probing synergistically combines the deep tissue penetration of gamma rays for tumor localization with the precision of fluorescence imaging for precise tumor resection. In this study, we detail the use of a genetically encoded multifunctional handle, henceforth referred to as a GEM-handle, for the development of fluorescent/radioactive bimodal single-domain antibody (sdAb)-based tracers. A sdAb that targets the urokinase plasminogen activator receptor (uPAR) was engineered to carry a GEM-handle containing a carboxy-terminal hexahistidine-tag and cysteine-tag. A two-step labeling strategy was optimized and applied to site-specifically label IRDye800CW and 99mTc to the sdAb. Bimodal labeling of the sdAbs proved straightforward and successful. 99mTc activity was however restricted to 18.5 MBq per nmol fluorescently-labeled sdAb to prevent radiobleaching of IRDye800CW without impeding SPECT/CT imaging. Subsequently, the in vivo biodistribution and tumor-targeting capacity of the bimodal tracer were evaluated in uPAR-positive tumor-bearing mice using SPECT/CT and fluorescence imaging. The bimodal sdAb showed expected renal background signals due to tracer clearance, along with slightly elevated non-specific liver signals. Four hours post-injection, both SPECT/CT and fluorescent images achieved satisfactory tumor uptake and contrast, with significantly higher values observed for the anti-uPAR bimodal sdAb compared to a control non-targeting sdAb. In conclusion, the GEM-handle is a convenient method for designing and producing bimodal sdAb-based tracers with adequate in vivo characteristics.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Corantes Fluorescentes , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Neoplasias/diagnóstico por imagem
16.
Biomolecules ; 13(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37189366

RESUMO

Molecular fluorescence-guided surgery using near-infrared light has the potential to improve the rate of complete resection of cancer. Typically, monoclonal antibodies are being used as targeting moieties, however smaller fragments, such as single-domain antibodies (i.e., Nanobodies®) improve tumor specificity and enable tracer injection on the same day as surgery. In this study, the feasibility of a carcinoembryonic antigen-targeting Nanobody (NbCEA5) conjugated to two zwitterionic dyes (ZW800-1 Forte [ZW800F] and ZW800-1) for visualization of pancreatic ductal adenocarcinoma (PDAC) was investigated. After site-specific conjugation of NbCEA5 to the zwitterionic dyes, binding specificity was evaluated on human PDAC cell lines with flow cytometry. A dose escalation study was performed for both NbCEA5-ZW800F and NbCEA5-ZW800-1 in mice with subcutaneously implanted pancreatic tumors. Fluorescence imaging was performed up to 24 h after intravenous injection. Furthermore, the optimal dose for NbCEA5-ZW800-1 was injected in mice with orthotopically implanted pancreatic tumors. A dose-escalation study showed superior mean fluorescence intensities for NbCEA5-ZW800-1 compared to NbCEA5-ZW800F. In the orthotopic tumor models, NbCEA5-ZW800-1 accumulated specifically in pancreatic tumors with a mean in vivo tumor-to-background ratio of 2.4 (SD = 0.23). This study demonstrated the feasibility and potential advantages of using a CEA-targeted Nanobody conjugated to ZW800-1 for intraoperative PDAC imaging.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Antígeno Carcinoembrionário , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Imagem Óptica/métodos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Corantes , Linhagem Celular Tumoral , Neoplasias Pancreáticas
17.
Front Pharmacol ; 14: 1266288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781693

RESUMO

Introduction: Surgical resection is one of the main treatment options for several types of cancer, the desired outcome being complete removal of the primary tumor and its local metastases. Any malignant tissue that remains after surgery may lead to relapsing disease, negatively impacting the patient's quality of life and overall survival. Fluorescence imaging in surgical oncology aims to facilitate full resection of solid tumors through the visualization of malignant tissue during surgery, following the administration of a fluorescent contrast agent. An important class of targeting molecules are Nanobodies® (Nbs), small antigen-binding fragments derived from camelid heavy chain only antibodies. When coupled with a fluorophore, Nbs can bind to a specific receptor and demarcate tumor margins through a fluorescence camera, improving the accuracy of surgical intervention. A widely investigated target for fluorescence-guided surgery is the epidermal growth factor receptor (EGFR), which is overexpressed in several types of tumors. Promising results with the fluorescently labeled anti-EGFR Nb 7D12-s775z in murine models motivated a project employing the compound in a pioneering study in dogs with spontaneous cancer. Methods: To determine the safety profile of the study drug, three healthy purpose-bred dogs received an intravenous injection of the tracer at 5.83, 11.66, and 19.47 mg/m2, separated by a 14-day wash-out period. Physical examination and fluorescence imaging were performed at established time points, and the animals were closely monitored between doses. Blood and urine values were analyzed pre- and 24 h post administration. Results: No adverse effects were observed, and blood and urine values stayed within the reference range. Images of the oral mucosa, acquired with a fluorescence imaging device (Fluobeam®), suggest rapid clearance, which was in accordance with previous in vivo studies. Discussion: These are the first results to indicate that 7D12-s775z is well tolerated in dogs and paves the way to conduct clinical trials in canine patients with EGFR-overexpressing spontaneous tumors.

18.
Theranostics ; 13(1): 355-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593955

RESUMO

Rationale: Nanobodies (Nbs) have emerged as an elegant alternative to the use of conventional monoclonal antibodies in cancer therapy, but a detailed microscopic insight into the in vivo pharmacokinetics of different Nb formats in tumor-bearers is lacking. This is especially relevant for the recognition and targeting of pro-tumoral tumor-associated macrophages (TAMs), which may be located in less penetrable tumor regions. Methods: We employed anti-Macrophage Mannose Receptor (MMR) Nbs, in a monovalent (m) or bivalent (biv) format, to assess in vivo TAM targeting. Intravital and confocal microscopy were used to analyse the blood clearance rate and targeting kinetics of anti-MMR Nbs in tumor tissue, healthy muscle tissue and liver. Fluorescence Molecular Tomography was applied to confirm anti-MMR Nb accumulation in the primary tumor and in metastatic lesions. Results: Intravital microscopy demonstrated significant differences in the blood clearance rate and macrophage targeting kinetics of (m) and (biv)anti-MMR Nbs, both in tumoral and extra-tumoral tissue. Importantly, (m)anti-MMR Nbs are superior in reaching tissue macrophages, an advantage that is especially prominent in tumor tissue. The administration of a molar excess of unlabelled (biv)anti-MMR Nbs increased the (m)anti-MMR Nb bioavailability and impacted on its macrophage targeting kinetics, preventing their accumulation in extra-tumoral tissue (especially in the liver) but only partially influencing their interaction with TAMs. Finally, anti-MMR Nb administration not only allowed the visualization of TAMs in primary tumors, but also at a distant metastatic site. Conclusions: These data describe, for the first time, a microscopic analysis of (m) and (biv)anti-MMR Nb pharmacokinetics in tumor and healthy tissues. The concepts proposed in this study provide important knowledge for the future use of Nbs as diagnostic and therapeutic agents, especially for the targeting of tumor-infiltrating immune cells.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Receptor de Manose , Lectinas Tipo C , Lectinas de Ligação a Manose , Receptores de Superfície Celular , Macrófagos Associados a Tumor , Neoplasias/tratamento farmacológico
19.
Methods Mol Biol ; 2446: 395-407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157285

RESUMO

Near-infrared fluorescence molecular imaging has become an established preclinical technique to investigate molecular processes in vivo and to study novel therapies. Furthermore, fluorescence molecular imaging is gaining significant interest from clinicians as an intra-operative guidance tool. This technique makes use of targeted fluorescent tracers as contrast agents that recognize specific biomarkers expressed at the site of disease. Single-domain antibodies have shown to possess excellent properties for in vivo imaging in comparison to conventional antibodies. In this chapter, we describe a method for site-specific conjugation of a near-infrared fluorophore to single-domain antibodies by exploiting cysteine-maleimide chemistry. As opposed to random conjugation, site-specific conjugation results in a homogenously labeled fluorescent tracer and avoids inference with antigen binding.


Assuntos
Anticorpos de Domínio Único , Cirurgia Assistida por Computador , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Imagem Molecular/métodos , Imagem Óptica/métodos , Anticorpos de Domínio Único/química
20.
Res Vet Sci ; 145: 248-254, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35299085

RESUMO

Interim analysis is the practice of performing a statistical analysis when the data have only been partially collected, for example, to save resources or to handle the uncertainty of the true effect size. Most statistical designs featuring interim analysis have been developed either in a general statistical setting or for application in clinical trials. As a result, most of them make assumptions and have conditions that in a preclinical setting are usually not met. In this paper, we present necessary changes to the most common forms of interim analysis enhanced for animal experiments, specifically for the t-test and the one-way ANOVA. Finally, we present software that allows freeware use to serve the research community to facilitate the design of experiments featuring interim analyses. The app can be found at icds.be/gsdesigner. It is in the public domain and its code can be found on github.com/ICDS-vubUZ/gsd-designer. In this GitHub folder, one can also find a tutorial for the app.


Assuntos
Projetos de Pesquisa , Análise de Variância , Animais , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA