Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712683

RESUMO

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Assuntos
Folhas de Planta , Ciclo do Carbono , Carbono/metabolismo
2.
Glob Chang Biol ; 26(2): 410-416, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31746093

RESUMO

Climate change poses significant emerging risks to biodiversity, ecosystem function and associated socioecological systems. Adaptation responses must be initiated in parallel with mitigation efforts, but resources are limited. As climate risks are not distributed equally across taxa, ecosystems and processes, strategic prioritization of research that addresses stakeholder-relevant knowledge gaps will accelerate effective uptake into adaptation policy and management action. After a decade of climate change adaptation research within the Australian National Climate Change Adaptation Research Facility, we synthesize the National Adaptation Research Plans for marine, terrestrial and freshwater ecosystems. We identify the key, globally relevant priorities for ongoing research relevant to informing adaptation policy and environmental management aimed at maximizing the resilience of natural ecosystems to climate change. Informed by both global literature and an extensive stakeholder consultation across all ecosystems, sectors and regions in Australia, involving thousands of participants, we suggest 18 priority research topics based on their significance, urgency, technical and economic feasibility, existing knowledge gaps and potential for cobenefits across multiple sectors. These research priorities provide a unified guide for policymakers, funding organizations and researchers to strategically direct resources, maximize stakeholder uptake of resulting knowledge and minimize the impacts of climate change on natural ecosystems. Given the pace of climate change, it is imperative that we inform and accelerate adaptation progress in all regions around the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Austrália , Biodiversidade , Mudança Climática
3.
Int J Biometeorol ; 62(5): 873-882, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29242979

RESUMO

The strong association between amphibian activity, breeding and recruitment with local environmental conditions raises concerns regarding how changes in climate may affect the persistence of species populations into the future. Additionally, in a highly diverse assemblage of anurans, competition for breeding sites affects the time and duration of activity, as species compete for limited resources such as water. Meteorological conditions are strong drivers of amphibian activity, so we assessed whether temperature, rainfall, atmospheric pressure and humidity were associated with the calling phenology of an assemblage of anurans in South East Queensland, Australia. We performed calling surveys and collected digital recordings at 45 ponds in an area known for high anuran diversity. We performed detection analyses to investigate the influence of 10 meteorological variables in detection of calling activity in 19 amphibian species. Our results suggest four breeding strategies in the assemblage: explosive summer breeders, prolonged breeders, opportunistic breeders and a winter breeder. Classifying these species into associations provides a framework for understanding how species respond to environmental conditions. Explosive breeders (i.e. species demonstrating short and highly synchronised breeding periods) were particularly responsive to temperature. Our findings help elucidate the breeding phenology of frogs and provide valuable information on their mating systems in native Australian forests. This study highlights the difficulties of surveying even common anurans. We highlight the importance of predictability and stability in climate and the vulnerability of species for which reproduction appears to require highly specific environmental cues.


Assuntos
Anuros/fisiologia , Vocalização Animal , Tempo (Meteorologia) , Animais , Masculino , Queensland , Reprodução , Estações do Ano
4.
Artigo em Inglês | MEDLINE | ID: mdl-27712921

RESUMO

It is well known that the disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) has contributed to amphibian declines worldwide. The impact of Bd varies, with some species being more susceptible to infection than others. Recent evidence has shown that Bd can have sub-lethal effects, whereby increases in stress hormones have been associated with infection. Could this increased stress response, which is a physiological adaptation that provides an increased resilience against Bd infection, potentially be a trade-off with important life-history traits such as reproduction? We studied this question in adult male frogs of a non-declining species (Litoria wilcoxii). Frogs were sampled for (1) seasonal hormone (testosterone and corticosterone), color and disease profiles, (2) the relationship between disease infection status and hormone levels or dorsal color, (3) subclinical effects of Bd by investigating disease load and hormone level, and (4) reproductive and stress hormone relationships independent of disease. Testosterone levels and color score varied seasonally (throughout the spring/summer months) while corticosterone levels remained stable. Frogs with high Bd prevalence had significantly higher corticosterone levels and lower testosterone levels compared to uninfected frogs, and no differences in color were observed. There was a significant positive correlation between disease load and corticosterone levels, and a significant negative relationship between disease load and testosterone. Our field data provides novel evidence that increased physiological stress response associated with Bd infection in wild frogs, could suppress reproduction by down-regulating gonadal hormones in amphibians, however the impacts on reproductive output is yet to be established.


Assuntos
Anuros/fisiologia , Quitridiomicetos/fisiologia , Interações Hospedeiro-Patógeno , Estresse Fisiológico , Animais , Anuros/microbiologia , Anuros/urina , Biomarcadores/urina , Quitridiomicetos/crescimento & desenvolvimento , Quitridiomicetos/isolamento & purificação , Corticosterona/urina , Ensaio de Imunoadsorção Enzimática/veterinária , Masculino , Queensland , Reprodução , Rios , Estações do Ano , Pele/metabolismo , Pele/microbiologia , Testosterona/urina
5.
J Therm Biol ; 41: 72-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24679975

RESUMO

Extreme environmental temperature could impact the physiology and ecology of animals. The stress endocrine axis provides necessary physiological stress response to acute (day-day) stressors. Presently, there are no empirical evidences showing that exposure to extreme thermal stressor could cause chronic stress in amphibians. This could also modulate the physiological endocrine sensitivity to acute stressors and have serious implications for stress coping in amphibians, particularly those living in fragmented and disease prone environments. We addressed this important question using the cane toad (Rhinella marina) model from its introduced range in Queensland, Australia. We quantified their physiological endocrine sensitivity to a standard acute (capture and handling) stressor after exposing the cane toads to thermal shock at 35°C for 30min daily for 34 days. Corticosterone (CORT) responses to the capture and handling protocol were measured on three sampling intervals (days 14, 24, and 34) to determine whether the physiological endocrine sensitivity was maintained or modulated over-time. Two control groups (C1 for baseline CORT measurement only and C2 acute handled only) and two temperature treatment groups (T1 received daily thermal shock up to day 14 only and a recovery phase of 20 days and T2 received thermal shock daily for 34 days). Results showed that baseline CORT levels remained high on day 14 (combined effect of capture, captivity and thermal stress) for both T1 and T2. Furthermore, baseline CORT levels decreased for T1 once the thermal shock was removed after day 14 and returned to baseline by day 29. On the contrary, baseline CORT levels kept on increasing for T2 over the 34 days of daily thermal shocks. Furthermore, the magnitudes of the acute CORT responses or physiological endocrine sensitivity were consistently high for both C1 and T1. However, acute CORT responses for T2 toads were dramatically reduced between days 24 and 34. These novel findings suggest that repeated exposure to extreme thermal stressor could cause chronic stress and consequently suppress the physiological endocrine sensitivity to acute stressors (e.g. pathogenic diseases) in amphibians.


Assuntos
Bufo marinus/fisiologia , Corticosterona/urina , Sistema Endócrino/fisiologia , Resposta ao Choque Térmico , Animais , Bufo marinus/urina , Limiar Sensorial
6.
Gen Comp Endocrinol ; 191: 225-30, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23851041

RESUMO

Non-invasive endocrine monitoring with minimally invasive biological samples, such as urine, is being used widely for conservation biology research on amphibians. Currently, it is unknown how closely urinary measurements correspond with the traditional serum hormone measurements. We compared urinary and serum concentrations of corticosterone (CORT) and testosterone (T) in adult male cane toads (Rhinella marina) using a standard capture and handling (short-term stressor) protocol. Free-living male cane toads were captured and sampled for baseline urine (0h) with a second urine sample taken at 0.5h and hourly between 1 and 8h. A single blood sample was collected from each toad after the final urine sampling and capture handling. The mean serum CORT concentration increased between 0 and 0.5h, reaching the highest level between 6 and 8h. The mean urinary CORT concentration increased with a lag-time of 1h and continued to increase up to 8h. The mean level of serum T decreased between 0 and 7h and increased between 7 and 8h. Mean urinary T concentration decreased with a lag-time of 0.5h. Urinary T levels did not change between 4 and 8h. Mean serum T levels reached 50% of the original 0h value at 1h while mean serum CORT levels reached 200% of the original 0h value within 0.5h. Mean urinary T levels reached 50% of the original 0h value within 3h while mean urinary CORT levels reached 200% of the original 0h value within 3h. The inter-individual variation in baseline serum and urinary CORT and T levels were highly comparable, suggesting that baseline urine sample provides a reliable indicator of the physiological status of the animal. Overall, the results have demonstrated that urine sampling and standard capture handling protocol provide reliable measures of baseline corticosterone and testosterone, as well as short-term stress hormone responses in amphibians.


Assuntos
Bufo marinus/sangue , Bufo marinus/urina , Corticosterona/sangue , Corticosterona/urina , Testosterona/sangue , Testosterona/urina , Animais , Bufo marinus/fisiologia , Masculino , Estresse Fisiológico
7.
Gen Comp Endocrinol ; 191: 24-30, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727276

RESUMO

This study used non-invasive endocrinology to examine baseline corticosterone at different altitudes in a free-living Australian amphibian: the Great Barred Frog (Mixophyes fasciolatus). An enzyme immunoassay (EIA) was performed on urine samples and validated biologically using an adrenocorticotropic hormone (ACTH) challenge. Frogs were injected with ACTH on day 0 and recaptures occurred 1-10days post injection. Urine samples and body condition measurements were collected from lowland (60m) and highland (660m and 790m) sub-populations of M. fasciolatus in South East Queensland (SEQ), close to their post-breeding period during autumn 2011. We simultaneously sampled these sub-populations for Batrachochytrium dendrobatidis (Bd), a pathogenic fungus responsible for mass mortalities of amphibians worldwide. The ACTH challenge successfully validated the urinary corticosterone EIA in M. fasciolatus, with a peak urinary corticosterone response to ACTH injection on day 2 and a return to baseline levels by day 6. Polymerase chain reaction (PCR) analysis of 50 individuals returned only 1 positive result for Bd. Simple linear regression showed a strong positive relationship between baseline urinary corticosterone concentrations and altitude and no relationship with body condition. We hypothesize that higher baseline corticosterone concentrations within highland sub-populations of male M. fasciolatus could be associated with increased environmental challenge at high altitudes and geographic range limits. Whether this pattern is an indication of chronic stress in highland populations or life-time fitness and survival, warrants future investigation.


Assuntos
Altitude , Anuros/urina , Glucocorticoides/urina , Técnicas Imunoenzimáticas/métodos , Animais , Anuros/microbiologia , Austrália , Quitridiomicetos/genética , Quitridiomicetos/patogenicidade , Corticosterona/urina , Masculino
8.
Gen Comp Endocrinol ; 187: 39-47, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23583768

RESUMO

Koalas (Phascolarctos cinereus) are the only extant representatives of Australia's unique marsupial family Phascolarctidae and were listed as nationally Vulnerable in 2012. Causes of mortality are diverse, although the disease chlamydiosis, dog attacks, collisions with cars, and loss of habitat represent the principal reasons for the continued species decline. Koala breeding facilities in Queensland and New South Wales, Australia have been established for conservation and tourism. Non-invasive monitoring of physiological stress is important for determining the sub-lethal effects of environmental stressors on the well-being, reproduction and survival of Koalas in Zoos and also in the wild. In this study, we developed a faecal cortisol metabolite (FCM) enzyme-immunoassay (EIA) for monitoring physiological stress in Koalas from two established Zoos in Australia and also within a free-living sub-population from Queensland. Biological validation of the FCM EIA was done using an adrenocorticotropic hormone (ACTH) challenge. We discovered excretory lag-times of FCM of 24 h in females (n=2) and 48 h in male (n=2) Koalas in response to the ACTH challenge. FCM levels showed an episodic and delayed peak response lasting up to 9 days post ACTH challenge. This finding should be taken into consideration when designing future experiments to study the impacts of short-term (acute) and chronic stressors on the Koalas. Laboratory validations were done using parallelism and recovery checks (extraction efficiency) of the cortisol standard against pooled Koala faecal extracts. Greater than 99% recovery of the cortisol standard was obtained as well as a parallel displacement curve against Koala faecal extracts. FCM levels of the captive Koalas (n=10 males and 13 females) significantly differed by sex, reproductive condition (lactating versus non-lactating Koalas) and the handling groups. Handled male Koalas had 200% higher FCM levels than their non-handled counterparts, while females were not affected by handling as long they were not undergoing lactation. There was no significant difference in FCM levels between the captive and wild Koalas (n=9 males and 7 females). Overall, these results provide foundation knowledge on non-invasive FCM analysis in this iconic Australian marsupial. Non-invasive stress endocrinology opens up opportunities for evaluating the sub-lethal physiological effects of management activities (including caging, translocation) on the nutritional status, reproductive behaviors and disease status of captive and managed in situ Koala populations.


Assuntos
Hidrocortisona/metabolismo , Phascolarctidae/metabolismo , Estresse Fisiológico/fisiologia , Hormônio Adrenocorticotrópico/farmacologia , Animais , Austrália , Fezes/química , Feminino , Técnicas Imunoenzimáticas , Masculino , Estresse Fisiológico/efeitos dos fármacos
9.
Gen Comp Endocrinol ; 194: 318-25, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140710

RESUMO

The tiger (Panthera tigris) faces a great risk of extinction as its wild numbers have plummeted due to poaching and habitat destruction so ex-situ conservation programs are becoming ever more necessary. Reliable non-invasive biomarkers of the stress hormone (cortisol) are necessary for assessing the health and welfare of tigers in captivity. To our knowledge, non-invasive stress endocrinology methods have not been tested as widely in tigers. The first aim of this study was to describe and validate a faecal cortisol metabolite enzyme-immmunoassay (FCM EIA) for two tiger sub-species, the Bengal tiger (Panthera tigris tigris) and the Sumatran tiger (Panthera tigris sumatrae). Individual tigers (n=22) were studied in two large Zoos in Queensland, Australia (Dreamworld Theme Park and Australia Zoo). Fresh faecal samples (<12 h old) were collected each morning from both Zoos over a study period of 21 days. Biological validation was conducted separately by collecting feces 5 days before and 5 days after blood was taken from four male and five female tigers. Results showed that mean FCM levels increased by 138% and 285% in the male and female tigers within 1 day after bloods were taken, returning to baseline in 5 days. Laboratory validations of the FCM EIA were done using an extraction efficiency test and parallelism. Results showed >89% recovery of the cortisol standard that was added to tiger faecal extract. We also obtained parallel displacement of the serially diluted cortisol standard against serially diluted tiger faecal extract. Our second aim was to determine whether the FCM levels were significantly different between tiger sub-species and sex. Results showed no significant difference in mean FCM levels between the Bengal and Sumatran tiger sub-species. Mean levels of FCMs were significantly higher in females than in male tigers. Those male and female tigers with reported health issues during the study period expressed higher FCM levels than the reportedly healthy tigers. Interestingly, those tigers that took part in some activity (such as walks, photos, presentations and guest feeds) expressed moderately higher FCM levels at Dreamworld and lower FCM levels at Australia Zoo in comparison to those tigers that did not take part in such activities. These results indicate potential habituation in some tigers for routine activity through specialized training and pre-conditioning. In conclusion, the FCM EIA described in this study provides a reliable non-invasive method for evaluating the stress status of tigers in Zoos.


Assuntos
Tigres/metabolismo , Animais , Conservação dos Recursos Naturais , Ecossistema , Fezes/química , Feminino , Hidrocortisona/metabolismo , Masculino
10.
Artigo em Inglês | MEDLINE | ID: mdl-23047053

RESUMO

Amphibians respond to environmental stressors by secreting corticosterone, a stress hormone which promotes physiological and behavioral responses. Capture handling can be used to stimulate physiological stress response in amphibians. The use of single blood sampling and presentation of mean data often limits the quantification of within and between individual variation in baseline and short-term corticosterone stress responses in amphibians. It is important for studies of amphibian physiological ecology to determine whether baseline and short-term corticosterone stress responses are consistent or not. We quantified repeatability (r), a statistical measure of consistency, in baseline and short-term corticosterone stress responses to a standard capture and handling stress protocol in free-living adult male cane toads (Rhinella marina). Corticosterone metabolite concentrations were measured entirely non-invasively in male toad urine samples via an enzyme-immunoassay. During the first sampling occasion, urine samples were collected manually from individual male toads (n=20) immediately upon field capture. Toads were handled for 5min then transferred to plastic bags (constituting a mild stressor), and urine samples were collected hourly over 8h in the field. The toads were resampled for baseline (0h) urine corticosterone with hourly urine sampling over 8h (for quantification of the stress induced corticosterone) at 14 day intervals on three consecutive occasions. Within and between sample variations in urinary corticosterone metabolite concentrations were also quantified. All toads expressed a corticosterone stress response over 8h to our standard capture and handling stress protocol. Variations both within and between toads was higher for corrected integrated corticosterone concentrations than corticosterone concentrations at baseline, 3 or 6h. Baseline urinary corticosterone metabolite concentration of the male toads was highly repeatable (r=0.877) together with high statistical repeatabilities for 3h (r=0.695), 6h (r=0.428) and 8h (r=0.775) corticosterone metabolite concentrations, and for the total and corrected integrated corticosterone responses (r=0.807; r=0.743 respectively). This study highlights that baseline and short-term corticosterone stress responses are repeatable in free-living amphibians. Future studies should utilize this non-invasive tool to explore repeatability among seasons and across years, and determine its functional significance in relation to behavioral ecology and reproduction in amphibians generally.


Assuntos
Anuros/fisiologia , Corticosterona/urina , Estresse Fisiológico , Animais , Anuros/metabolismo , Anuros/urina , Comportamento Animal/fisiologia , Corticosterona/metabolismo , Manobra Psicológica , Técnicas Imunoenzimáticas , Masculino , Reprodutibilidade dos Testes , Estações do Ano , Sensibilidade e Especificidade , Estatísticas não Paramétricas , Fatores de Tempo , Micção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA