Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(5): 1037-49, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24836610

RESUMO

RECQL5 is the sole member of the RECQ family of helicases associated with RNA polymerase II (RNAPII). We now show that RECQL5 is a general elongation factor that is important for preserving genome stability during transcription. Depletion or overexpression of RECQL5 results in corresponding shifts in the genome-wide RNAPII density profile. Elongation is particularly affected, with RECQL5 depletion causing a striking increase in the average rate, concurrent with increased stalling, pausing, arrest, and/or backtracking (transcription stress). RECQL5 therefore controls the movement of RNAPII across genes. Loss of RECQL5 also results in the loss or gain of genomic regions, with the breakpoints of lost regions located in genes and common fragile sites. The chromosomal breakpoints overlap with areas of elevated transcription stress, suggesting that RECQL5 suppresses such stress and its detrimental effects, and thereby prevents genome instability in the transcribed region of genes.


Assuntos
Instabilidade Genômica , RecQ Helicases/metabolismo , Elongação da Transcrição Genética , Transcrição Gênica , Genoma Humano , Células HEK293 , Humanos , RNA Polimerase II/metabolismo
2.
Mol Syst Biol ; 18(2): e9816, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35156763

RESUMO

The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it "computes" expression remains poorly understood. To dissect its function, we carried out a comprehensive structure-function analysis in Drosophila. First, we performed a genome-wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters' activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans.


Assuntos
Biologia Computacional , Drosophila , Animais , Drosophila/genética , Genoma , Regiões Promotoras Genéticas
3.
Genome Res ; 29(12): 1996-2009, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31694866

RESUMO

Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation because nucleosomes modulate DNA access by their positioning along the genome. A cell-population nucleosome map requires two observables: nucleosome positions along the DNA ("Where?") and nucleosome occupancies across the population ("In how many cells?"). All available genome-wide nucleosome mapping techniques are yield methods because they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or nonnucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions, but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby cross-validating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9-bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (±SD). Depending on nucleosome position calling procedures, there are 57,000 to 60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but correlate with increased presence of the nucleosome-evicting chromatin structure remodeling (RSC) complex, and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.


Assuntos
Mapeamento Cromossômico , DNA Fúngico/genética , Genoma Fúngico , Nucleossomos/genética , Saccharomyces cerevisiae/genética , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Nature ; 484(7394): 386-9, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22446626

RESUMO

Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre-mRNA emerges from transcribing RNA polymerase II (RNAPII), it is assembled into a messenger ribonucleoprotein (mRNP) particle; this is the functional form of the nascent pre-mRNA and determines the fate of the mature transcript. However, factors that connect the transcribing polymerase with the mRNP particle and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD)) as subunits of a novel protein complex--named DBIRD--that binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in (A + T)-rich DNA, and is present at the affected exons. RNA-interference-mediated DBIRD depletion results in region-specific decreases in transcript elongation, particularly across areas encompassing affected exons. Together, these data indicate that the DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with the regulation of alternative splicing.


Assuntos
Processamento Alternativo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , Cromatina/metabolismo , Éxons/genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/deficiência , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
5.
BMC Bioinformatics ; 14 Suppl 3: S7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23514582

RESUMO

BACKGROUND: Any method that de novo predicts protein function should do better than random. More challenging, it also ought to outperform simple homology-based inference. METHODS: Here, we describe a few methods that predict protein function exclusively through homology. Together, they set the bar or lower limit for future improvements. RESULTS AND CONCLUSIONS: During the development of these methods, we faced two surprises. Firstly, our most successful implementation for the baseline ranked very high at CAFA1. In fact, our best combination of homology-based methods fared only slightly worse than the top-of-the-line prediction method from the Jones group. Secondly, although the concept of homology-based inference is simple, this work revealed that the precise details of the implementation are crucial: not only did the methods span from top to bottom performers at CAFA, but also the reasons for these differences were unexpected. In this work, we also propose a new rigorous measure to compare predicted and experimental annotations. It puts more emphasis on the details of protein function than the other measures employed by CAFA and may best reflect the expectations of users. Clearly, the definition of proper goals remains one major objective for CAFA.


Assuntos
Proteínas/fisiologia , Homologia de Sequência de Aminoácidos , Algoritmos , Proteínas/genética
6.
Methods Mol Biol ; 2611: 121-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807068

RESUMO

Digestion with restriction enzymes is a classical approach for probing DNA accessibility in chromatin. It allows to monitor both the cut and the uncut fraction and thereby the determination of accessibility or occupancy (= 1 - accessibility) in absolute terms as the percentage of cut or uncut molecules, respectively, out of all molecules. The protocol presented here takes this classical approach to the genome-wide level. After exhaustive restriction enzyme digestion of chromatin, DNA is purified, sheared, and converted into libraries for high-throughput sequencing. Bioinformatic analysis counts uncut DNA fragments as well as DNA ends generated by restriction enzyme digest and derives thereof the fraction of accessible DNA. This straightforward principle is technically challenged as preparation and sequencing of the libraries leads to biased scoring of DNA fragments. Our protocol includes two orthogonal approaches to correct for this bias, the "corrected cut-uncut" and the "cut-all cut" method, so that accurate measurements of absolute accessibility or occupancy at restriction sites throughout a genome are possible. The protocol is presented for the example of S. cerevisiae chromatin but may be adapted for any other species.


Assuntos
Cromatina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , DNA/genética , Genoma , Enzimas de Restrição do DNA/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA