Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cereb Cortex ; 33(19): 10411-10425, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37550066

RESUMO

Dietary polyphenols have beneficial effects in situations of impaired cognition in acute models of neurodegeneration. The possibility that they may have a direct effect on the electrical activity of neuronal populations has not been tested. We explored the electrophysiological action of protocatechuic acid (PCA) on CA1 pyramidal cells ex vivo and network activity in anesthetized female rats using pathway-specific field potential (FP) generators obtained from laminar FPs in cortex and hippocampus. Whole-cell recordings from CA1 pyramidal cells revealed increased synaptic potentials, particularly in response to basal dendritic excitation, while the associated evoked firing was significantly reduced. This counterintuitive result was attributed to a marked increase of the rheobase and voltage threshold, indicating a decreased ability to generate spikes in response to depolarizing current. Systemic administration of PCA only slightly altered the ongoing activity of some FP generators, although it produced a striking disengagement of infraslow activities between the cortex and hippocampus on a scale of minutes. To our knowledge, this is the first report showing the direct action of a dietary polyphenol on electrical activity, performing neuromodulatory roles at both the cellular and network levels.


Assuntos
Hipocampo , Neurônios , Ratos , Feminino , Animais , Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
2.
Cereb Cortex ; 33(7): 3636-3650, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35972425

RESUMO

The activity of neuron populations gives rise to field potentials (FPs) that extend beyond the sources. Their mixing in the volume dilutes the original temporal motifs in a site-dependent manner, a fact that has received little attention. And yet, it potentially rids of physiological significance the time-frequency parameters of individual waves (amplitude, phase, duration). This is most likely to happen when a single source or a local origin is erroneously assumed. Recent studies using spatial treatment of these signals and anatomically realistic modeling of neuron aggregates provide convincing evidence for the multisource origin and site-dependent blend of FPs. Thus, FPs generated in primary structures like the neocortex and hippocampus reach far and cross-contaminate each other but also, they add and even impose their temporal traits on distant regions. Furthermore, both structures house neurons that act as spatially distinct (but overlapped) FP sources whose activation is state, region, and time dependent, making the composition of so-called local FPs highly volatile and strongly site dependent. Since the spatial reach cannot be predicted without source geometry, it is important to assess whether waveforms and temporal motifs arise from a single source; otherwise, those from each of the co-active sources should be sought.


Assuntos
Atenção , Neurônios , Neurônios/fisiologia , Hipocampo
3.
Chaos ; 33(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38079645

RESUMO

The correlation dimension (CD) is a nonlinear measure of the complexity of invariant sets. First introduced for describing low-dimensional chaotic attractors, it has been later extended to the analysis of experimental electroencephalographic (EEG), magnetoencephalographic (MEG), and local field potential (LFP) recordings. However, its direct application to high-dimensional (dozens of signals) and high-definition (kHz sampling rate) 2HD data revealed a controversy in the results. We show that the need for an exponentially long data sample is the main difficulty in dealing with 2HD data. Then, we provide a novel method for estimating CD that enables orders of magnitude reduction of the required sample size. The approach decomposes raw data into statistically independent components and estimates the CD for each of them separately. In addition, the method allows ongoing insights into the interplay between the complexity of the contributing components, which can be related to different anatomical pathways and brain regions. The latter opens new approaches to a deeper interpretation of experimental data. Finally, we illustrate the method with synthetic data and LFPs recorded in the hippocampus of a rat.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Ratos , Animais , Fatores de Tempo , Eletroencefalografia/métodos , Encéfalo , Hipocampo
4.
Neurocrit Care ; 37(Suppl 1): 83-101, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257321

RESUMO

BACKGROUND: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Acidente Vascular Cerebral , Lesões Encefálicas/terapia , Consenso , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos
5.
Neurocrit Care ; 37(Suppl 1): 11-30, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194729

RESUMO

BACKGROUND: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos , Isquemia
6.
J Neurosci ; 39(45): 8900-8915, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31548234

RESUMO

Spontaneous correlated activity in cortical columns is critical for postnatal circuit refinement. We used spatial discrimination techniques to explore the late maturation of synaptic pathways through the laminar distribution of the field potential (FP) generators underlying spontaneous and evoked activities of the S1HL cortex in juvenile (P14-P16) and adult anesthetized rats. Juveniles exhibit an intermittent FP pattern resembling Up/Down states in adults, but with much reduced power and different laminar distribution. Whereas FPs in active periods are dominated by a layer VI generator in juveniles, in adults a developing multipart generator takes over, displaying current sinks in middle layers (III-V). The blockade of excitatory transmission in upper and middle layers of adults recovered the juvenile-like FP profiles. In addition to the layer VI generator, a gamma-specific generator in supragranular layers was the same in both age groups. While searching for dynamical coupling among generators in juveniles we found significant cross-correlation in ∼one-half of the tested pairs, whereas excessive coherence hindered their efficient separation in adults. Also, potentials evoked by tactile and electrical stimuli showed different short-latency dipoles between the two age groups, and the juveniles lacked the characteristic long latency UP state currents in middle layers. In addition, the mean firing rate of neurons was lower in juveniles. Thus, cortical FPs originate from different intra-columnar segments as they become active postnatally. We suggest that although some cortical segments are active early postnatally, a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.SIGNIFICANCE STATEMENT Early postnatal activity in the rodent cortex is mostly endogenous, whereas it becomes driven by peripheral input at later stages. The precise schedule for the maturation of synaptic pathways is largely unknown. We explored this in the somatosensory hindlimb cortex at an age when animals begin to use their limbs by uncovering the laminar distribution of the field potential generators underlying the dominant delta waves in juveniles and adults. Our results suggest that field potentials are mostly generated by a pathway in deep layers, whereas other pathways mature later in middle layers and take over in adults. We suggest that a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.


Assuntos
Potenciais Somatossensoriais Evocados , Neurogênese , Córtex Somatossensorial/fisiologia , Animais , Feminino , Ritmo Gama , Masculino , Ratos , Ratos Wistar , Tempo de Reação , Córtex Somatossensorial/citologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tato
7.
Cereb Cortex ; 29(12): 5234-5254, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30941394

RESUMO

Brain field potentials (FPs) can reach far from their sources, making difficult to know which waves come from where. We show that modern algorithms efficiently segregate the local and remote contributions to cortical FPs by recovering the generator-specific spatial voltage profiles. We investigated experimentally and numerically the local and remote origin of FPs in different cortical areas in anesthetized rats. All cortices examined show significant state, layer, and region dependent contribution of remote activity, while the voltage profiles help identify their subcortical or remote cortical origin. Co-activation of different cortical modules can be discriminated by the distinctive spatial features of the corresponding profiles. All frequency bands contain remote activity, thus influencing the FP time course, in cases drastically. The reach of different FP patterns is boosted by spatial coherence and curved geometry of the sources. For instance, slow cortical oscillations reached the entire brain, while hippocampal theta reached only some portions of the cortex. In anterior cortices, most alpha oscillations have a remote origin, while in the visual cortex the remote theta and gamma even surpass the local contribution. The quantitative approach to local and distant FP contributions helps to refine functional connectivity among cortical regions, and their relation to behavior.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Modelos Neurológicos , Animais , Eletroencefalografia , Ratos , Ratos Wistar
8.
Cereb Cortex ; 26(10): 4082-4100, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26400920

RESUMO

Identifying the pathways contributing to local field potential (LFP) events and oscillations is essential to determine whether synchronous interregional patterns indicate functional connectivity. Here, we studied experimentally and numerically how different target structures receiving input from a common population shape their LFPs. We focused on the bilateral CA3 that sends gamma-paced excitatory packages to the bilateral CA1, the lateral septum, and itself (recurrent input). The CA3-specific contribution was isolated from multisite LFPs in target regions using spatial discrimination techniques. We found strong modulation of LFPs by target-specific features, including the morphology and population arrangement of cells, the timing of CA3 inputs, volume conduction from nearby targets, and co-activated inhibition. Jointly they greatly affect the LFP amplitude, profile, and frequency characteristics. For instance, ipsilateral (Schaffer) LFPs occluded contralateral ones, and septal LFPs arise mostly from remote sources while local contribution from CA3 input was minor. In the CA3 itself, gamma waves have dual origin from local networks: in-phase excitatory and nearly antiphase inhibitory. Also, waves may have different duration and varying phase in different targets. These results indicate that to explore the cellular basis of LFPs and the functional connectivity between structures, besides identifying the origin population/s, target modifiers should be considered.


Assuntos
Região CA3 Hipocampal/fisiologia , Animais , Bicuculina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/efeitos dos fármacos , Cateteres de Demora , Simulação por Computador , Eletrodos Implantados , Feminino , Lateralidade Funcional , Antagonistas de Receptores de GABA-A/farmacologia , Ritmo Gama/fisiologia , Lidocaína/farmacologia , Potenciais da Membrana , Modelos Neurológicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos Sprague-Dawley , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
9.
Acta Neurochir Suppl ; 120: 137-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25366613

RESUMO

The term spreading depolarization describes a mechanism of abrupt, massive ion translocation between neurons and the interstitial space, which leads to a cytotoxic edema in the gray matter of the brain. In energy-compromised tissue, spreading depolarization is preceded by a nonspreading silencing (depression of spontaneous activity) because of a neuronal hyperpolarization. By contrast, in tissue that is not energy compromised, spreading depolarization is accompanied by a spreading silencing (spreading depression) of spontaneous activity caused by a depolarization block. It is assumed that the nonspreading silencing translates into the initial clinical symptoms of ischemic stroke and the spreading silencing (spreading depression) into the symptoms of migraine aura. In energy-compromised tissue, spreading depolarization facilitates neuronal death, whereas, in healthy tissue, it is relatively innocuous. Therapies targeting spreading depolarization in metabolically compromised tissue may potentially treat conditions of acute cerebral injury such as aneurysmal subarachnoid hemorrhage.


Assuntos
Isquemia Encefálica/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Hemorragia Subaracnóidea/fisiopatologia , Humanos
10.
J Neurosci ; 33(39): 15518-32, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068819

RESUMO

To determine why some pathways but not others produce sizable local field potentials (LFPs) and how far from the source can these be recorded, complementary experimental analyses and realistic modeling of specific brain structures are required. In the present study, we combined multiple in vivo linear recordings in rats and a tridimensional finite element model of the dentate gyrus, a curved structure displaying abnormally large positive LFPs. We demonstrate that the polarized dendritic arbour of granule cells (GCs), combined with the curved layered configuration of the population promote the spatial clustering of GC currents in the interposed hilus and project them through the open side at a distance from cell domains. LFPs grow up to 20 times larger than observed in synaptic sites. The dominant positive polarity of hilar LFPs was only produced by the synchronous activation of GCs in both blades by either somatic inhibition or dendritic excitation. Moreover, the corresponding anatomical pathways must project to both blades of the dentate gyrus as even a mild decrease in the spatial synchronization resulted in a dramatic reduction in LFP power in distant sites, yet not in the GC domains. It is concluded that the activation of layered structures may establish sharply delimited spatial domains where synaptic currents from one or another input appear to be segregated according to the topology of afferent pathways and the cytoarchitectonic features of the target population. These also determine preferred directions for volume conduction in the brain, of relevance for interpretation of surface EEG recordings.


Assuntos
Giro Denteado/fisiologia , Modelos Neurológicos , Potenciais Sinápticos , Animais , Dendritos/fisiologia , Giro Denteado/citologia , Feminino , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia
11.
J Neurosci ; 32(15): 5165-76, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496562

RESUMO

Information processing and exchange between brain nuclei are made through spike series sent by individual neurons in highly irregular temporal patterns. Synchronization in cell assemblies, proposed as a network language for internal neural representations, still has little experimental support. We use a novel technique to extract pathway-specific local field potentials (LFPs) in the hippocampus to explore the ongoing temporal structure of a single presynaptic input, the CA3 Schaffer pathway, and its contribution to the spontaneous output of CA1 units in anesthetized rat. We found that Schaffer-specific LFPs are composed of a regular succession of pulse-like excitatory packages initiated by spontaneous clustered firing of CA3 pyramidal cells to which individual units contribute variably. A fraction of these packages readily induce firing of CA1 pyramidal cells and interneurons, the so-called Schaffer-driven spikes, revealing the presynaptic origin in the output code of single CA1 units. The output of 70% of CA1 pyramidal neurons contains up to 10% of such spikes. Our results suggest a hierarchical internal operation of the CA3 region based on sequential oscillatory activation of pyramidal cell assemblies whose activity partly gets in the output code at the next station. We conclude that CA1 output may directly reflect the activity of specific ensembles of CA3 neurons. Thus, the fine temporal structure of pathway-specific LFPs, as an accurate readout of the activity of a presynaptic population, is useful in searching for hidden presynaptic code in irregular spikes series of individual neurons and assemblies.


Assuntos
Região CA1 Hipocampal/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Algoritmos , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Terminações Pré-Sinápticas/fisiologia , Análise de Componente Principal , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
12.
Front Cell Neurosci ; 17: 1129097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066073

RESUMO

Field potential (FP) recording is an accessible means to capture the shifts in the activity of neuron populations. However, the spatial and composite nature of these signals has largely been ignored, at least until it became technically possible to separate activities from co-activated sources in different structures or those that overlap in a volume. The pathway-specificity of mesoscopic sources has provided an anatomical reference that facilitates transcending from theoretical analysis to the exploration of real brain structures. We review computational and experimental findings that indicate how prioritizing the spatial geometry and density of sources, as opposed to the distance to the recording site, better defines the amplitudes and spatial reach of FPs. The role of geometry is enhanced by considering that zones of the active populations that act as sources or sinks of current may arrange differently with respect to each other, and have different geometry and densities. Thus, observations that seem counterintuitive in the scheme of distance-based logic alone can now be explained. For example, geometric factors explain why some structures produce FPs and others do not, why different FP motifs generated in the same structure extend far while others remain local, why factors like the size of an active population or the strong synchronicity of its neurons may fail to affect FPs, or why the rate of FP decay varies in different directions. These considerations are exemplified in large structures like the cortex and hippocampus, in which the role of geometrical elements and regional activation in shaping well-known FP oscillations generally go unnoticed. Discovering the geometry of the sources in play will decrease the risk of population or pathway misassignments based solely on the FP amplitude or temporal pattern.

13.
Front Cell Neurosci ; 17: 1217081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576568

RESUMO

The role of interhemispheric connections along successive segments of cortico-hippocampal circuits is poorly understood. We aimed to obtain a global picture of spontaneous transfer of activity during non-theta states across several nodes of the bilateral circuit in anesthetized rats. Spatial discrimination techniques applied to bilateral laminar field potentials (FP) across the CA1/Dentate Gyrus provided simultaneous left and right readouts in five FP generators that reflect activity in specific hippocampal afferents and associative pathways. We used a battery of correlation and coherence analyses to extract complementary aspects at different time scales and frequency bands. FP generators exhibited varying bilateral correlation that was high in CA1 and low in the Dentate Gyrus. The submillisecond delays indicate coordination but not support for synaptic dependence of one side on another. The time and frequency characteristics of bilateral coupling were specific to each generator. The Schaffer generator was strongly bilaterally coherent for both sharp waves and gamma waves, although the latter maintained poor amplitude co-variation. The lacunosum-moleculare generator was composed of up to three spatially overlapping activities, and globally maintained high bilateral coherence for long but not short (gamma) waves. These two CA1 generators showed no ipsilateral relationship in any frequency band. In the Dentate Gyrus, strong bilateral coherence was observed only for input from the medial entorhinal areas, while those from the lateral entorhinal areas were largely asymmetric, for both alpha and gamma waves. Granger causality testing showed strong bidirectional relationships between all homonymous bilateral generators except the lateral entorhinal input and a local generator in the Dentate Gyrus. It also revealed few significant relationships between ipsilateral generators, most notably the anticipation of lateral entorhinal cortex toward all others. Thus, with the notable exception of the lateral entorhinal areas, there is a marked interhemispheric coherence primarily for slow envelopes of activity, but not for pulse-like gamma waves, except in the Schafer segment. The results are consistent with essentially different streams of activity entering from and returning to the cortex on each side, with slow waves reflecting times of increased activity exchange between hemispheres and fast waves generally reflecting ipsilateral processing.

14.
Nat Commun ; 14(1): 7729, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007508

RESUMO

Spreading depolarizations (SDs) are classically thought to be associated with spreading depression of cortical activity. Here, we found that SDs in patients with subarachnoid hemorrhage produce variable, ranging from depression to booming, changes in electrocorticographic activity, especially in the delta frequency band. In rats, depression of activity was characteristic of high-potassium-induced full SDs, whereas partial superficial SDs caused either little change or a boom of activity at the cortical vertex, supported by volume conduction of signals from spared delta generators in the deep cortical layers. Partial SDs also caused moderate neuronal depolarization and sustained excitation, organized in gamma oscillations in a narrow sub-SD zone. Thus, our study challenges the concept of homology between spreading depolarization and spreading depression by showing that SDs produce variable, from depression to booming, changes in activity at the cortical surface and in different cortical layers depending on the depth of SD penetration.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Humanos , Ratos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Eletrocorticografia , Cabeça , Neurônios
15.
J Neurophysiol ; 103(5): 2446-57, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20220074

RESUMO

Spreading depression (SD) is a pathological wave of depolarization of the neural tissue producing a negative macroscopic field potential (V(o)), used as a marker for diagnostic purposes. The cellular basis of SD and neuronal mechanisms of generation of V(o) at the microscopic level are poorly understood. Using a CA1 mathematical model and experimental verification, we examined how transmembrane currents in single cells scale up in the extracellular space shaping V(o). The model includes an array of 17,000 realistically modeled neurons (responsible for generating transmembrane currents) dynamically coupled to a virtual aggregate/extracellular space (responsible for V(o)). The SD wave in different tissue bands is simulated by imposing membrane shunts in the corresponding dendritic elements as suggested by experimentally assessed drop in membrane resistance. We show that strong isopotential depolarization of wide domains (as in the main SD phase) produce broad central cancellation of axial and transmembrane currents in single cells. When depolarization is restricted to narrow dendritic domains (as in the late SD phase), the internal cancellation shrinks and the transmembrane current increases. This explains why in the laminated CA1 the V(o) is smaller in the main phase of SD, when both dendritic layers are seized, than in the SD tail restricted to an apical band. Moreover, scattering of the neuronal somatas (as in cortical regions) further decreases the aggregate V(o) due to the volume averaging. Although mechanistically the V(o) associated to SD is similar to customary transient fields, its changes maybe related to spatial factors in single cells rather than cell number or depolarization strength.


Assuntos
Região CA1 Hipocampal/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Região CA1 Hipocampal/citologia , Simulação por Computador , Dendritos/fisiologia , Espaço Extracelular/fisiologia , Retroalimentação Fisiológica , Microeletrodos , Neurônios/citologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
16.
J Comput Neurosci ; 29(3): 445-57, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20094907

RESUMO

The spontaneous activity of working neurons yields synaptic currents that mix up in the volume conductor. This activity is picked up by intracerebral recording electrodes as local field potentials (LFPs), but their separation into original informative sources is an unresolved problem. Assuming that synaptic currents have stationary placing we implemented independent component model for blind source separation of LFPs in the hippocampal CA1 region. After suppressing contaminating sources from adjacent regions we obtained three main local LFP generators. The specificity of the information contained in isolated generators is much higher than in raw potentials as revealed by stronger phase-spike correlation with local putative interneurons. The spatial distribution of the population synaptic input corresponding to each isolated generator was disclosed by current-source density analysis of spatial weights. The found generators match with axonal terminal fields from subtypes of local interneurons and associational fibers from nearby subfields. The found distributions of synaptic currents were employed in a computational model to reconstruct spontaneous LFPs. The phase-spike correlations of simulated units and LFPs show laminar dependency that reflects the nature and magnitude of the synaptic currents in the targeted pyramidal cells. We propose that each isolated generator captures the synaptic activity driven by a different neuron subpopulation. This offers experimentally justified model of local circuits creating extracellular potential, which involves distinct neuron subtypes.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Potenciais da Membrana/fisiologia , Algoritmos , Animais , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Córtex Cerebral/fisiologia , Interpretação Estatística de Dados , Giro Denteado/fisiologia , Eletroencefalografia , Feminino , Modelos Neurológicos , Terminações Pré-Sinápticas/fisiologia , Análise de Componente Principal , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
17.
J Cereb Blood Flow Metab ; 40(10): 1934-1952, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32580670

RESUMO

Spreading depolarization (SD) is a self-propagated wave that provokes transient disorder of numerous cell and tissue functions, and that may kill neurons in metabolically compromised tissue. We examined the mechanisms underlying the main hallmark of SD, a giant extracellular potential (ΔVo) for which multiple electromotive forces have been proposed. The end-point is that neurons and not glia, dendritic channels and not spatial currents, and increased sodium conductance rather than potassium gradients, appear to be the main actors in the generation of the negative ΔVo. Neuronal currents are established by two mechanisms, a voltage independent dendritic current, and the differential polarization along the neuron membranes. Notably, despite of a marked drop of ion gradients, these evolve significantly during SD, and yet the membrane potential remains clamped at zero no matter how much inward current is present. There may be substantial inward current or none in function of the evolving portion of the neuron dendrites with SD-activated channels. We propose that the ΔVo promotes swelling-induced dendritic damage. Understanding SD electrogenesis requires all elements relevant for membrane potential, action currents, field potentials and volume conduction to be jointly considered, and it has already encouraged the search for new targets to limit SD-related pathology.


Assuntos
Encéfalo/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Animais , Humanos
18.
Elife ; 92020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32687054

RESUMO

Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.


In the brain, a vast number of neurons coordinate their activity to support complex cognitive processes. One of the best places to see this in action is the hippocampus, a brain structure with a key role in memory and navigation. The hippocampus shows waves of electrical activity, which represent the synchronized firing of large numbers of neurons. The hippocampus can generate multiple rhythms at once. The two main rhythms are theta and gamma. Theta waves are slow, with a frequency of about 8 Hertz. Gamma waves are faster with a frequency of up to 120 Hertz or even more. Theta waves are always present in the brains of freely moving animals, whereas gamma waves occur in brief bursts. These bursts usually correspond to a particular point on the theta wave. One burst may occur just before each peak of the theta wave, for example, whereas another burst may occur just after the peak. This separation enables individual bursts of gamma to carry different messages without them becoming mixed up. This is similar to how radio stations broadcast their signals at different carrier frequencies to avoid interference. By recording hippocampal activity in rats exploring a maze, Lopez-Madrona et al. now show that the hippocampus has not one, but three generators of theta waves. Having three sources of theta, each of which can be synchronized with gamma, provides a more versatile system for encoding and sending information. It also means that the three theta generators can vary the degree to which they coordinate their firing. This helps the brain combine or separate streams of information as required. By working together to create a single theta rhythm, for example, the three theta generators can help animals combine information stored in memory with incoming sensory input. How the coordination of theta rhythms in the hippocampus influences the activity of other brain regions involved in learning and memory remains unclear. However, uncoupling of theta and gamma waves seems to be an early sign of Alzheimer's disease and can also be seen in the brains of people with schizophrenia and other psychiatric disorders. Understanding how this process occurs could provide clues to the origin of these disorders.


Assuntos
Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Ritmo Teta/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans
19.
Front Syst Neurosci ; 13: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998083

RESUMO

Field potentials (FPs) are easily reached signals that provide information about the brain's processing. However, FP should be interpreted cautiously since their biophysical bases are complex. The lateral habenula (LHb) is a brain structure involved in the encoding of aversive motivational values. Previous work indicates that the activity of the LHb is relevant for hippocampal-dependent learning. Moreover, it has been proposed that the interaction of the LHb with the hippocampal network is evidenced by the synchronization of LHb and hippocampal FPs during theta rhythm. However, the origin of the habenular FP has not been analyzed. Hence, its validity as a measurement of LHb activity has not been proven. In this work, we used electrophysiological recordings in anesthetized rats and feed-forward modeling to investigate biophysical basis of the FP recorded in the LHb. Our results indicate that the FP in the LHb during theta rhythm is a volume-conducted signal from the hippocampus. This result highlight that FPs must be thoroughly analyzed before its biological interpretation and argues against the use of the habenular FP signal as a readout of the activity of the LHb.

20.
Eur J Neurosci ; 27(2): 444-56, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18215240

RESUMO

Spreading depression (SD), a wave of neuron activity related to migraine and the ischaemic penumbra, features a moving shell of extracellular negative potential shift (V(o)) whose generators are poorly understood. We investigated its subcellular correlates in the hippocampal CA1 in vivo by localizing the neuron domains that generate transmembrane current (I(m)) using field analysis, and the local changes of tissue resistivity, a major determinant of extracellular current flow. A large increase of tissue resistivity occurred in times and dendritic strata displaying large V(o), albeit with different rates. Typically, SD is composed of basal and apical dendritic components. The apical SD lasts much longer, while it becomes gradually restricted to a narrow dendritic region. Strikingly, pyramidal cells displayed a strong surge of inward current only when SD affected a small dendritic region. However, when the V(o) signal covered most of the main neuron axis, only smaller surges of inward current developed at the outer dendritic rims of a wide null current zone. Computational reconstruction showed that this effect was due to strong spatial cancellation of the inward and outward currents in SD-activated isopotential and shunted regions of individual neurons. Consequently, despite former accounts of large conductance increase, the net I(m) is small and the large DeltaV(o) amplitude mostly due to increased tissue resistivity. The particular subcellular evolution indicates an initial explosive opening of conductance along most of the pyramidal neuron followed by a wave-like centripetal closure towards the apical dendrites. The applicability of these mechanisms to SD in other brain regions is discussed.


Assuntos
Potenciais de Ação/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Impedância Elétrica , Feminino , Hipocampo/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA