Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(17): 9397-9414, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37526268

RESUMO

Ribosome biogenesis is one of the biggest consumers of cellular energy. More than 20 genetic diseases (ribosomopathies) and multiple cancers arise from defects in the production of the 40S (SSU) and 60S (LSU) ribosomal subunits. Defects in the production of either the SSU or LSU result in p53 induction through the accumulation of the 5S RNP, an LSU assembly intermediate. While the mechanism is understood for the LSU, it is still unclear how SSU production defects induce p53 through the 5S RNP since the production of the two subunits is believed to be uncoupled. Here, we examined the response to SSU production defects to understand how this leads to the activation of p53 via the 5S RNP. We found that p53 activation occurs rapidly after SSU production is blocked, prior to changes in mature ribosomal RNA (rRNA) levels but correlated with early, middle and late SSU pre-rRNA processing defects. Furthermore, both nucleolar/nuclear LSU maturation, in particular late stages in 5.8S rRNA processing, and pre-LSU export were affected by SSU production defects. We have therefore uncovered a novel connection between the SSU and LSU production pathways in human cells, which explains how p53 is induced in response to SSU production defects.


Assuntos
Subunidades Ribossômicas Maiores , Subunidades Ribossômicas Menores , Proteína Supressora de Tumor p53 , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Structure ; 29(3): 292-304.e3, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33296666

RESUMO

The formation of specific protein complexes in a cell is a non-trivial problem given the co-existence of thousands of different polypeptide chains. A particularly difficult case are two glutamine amidotransferase complexes (anthranilate synthase [AS] and aminodeoxychorismate synthase [ADCS]), which are composed of homologous pairs of synthase and glutaminase subunits. We have attempted to identify discriminating interface residues of the glutaminase subunit TrpG from AS, which are responsible for its specific interaction with the synthase subunit TrpEx and prevent binding to the closely related synthase subunit PabB from ADCS. For this purpose, TrpG-specific interface residues were grafted into the glutaminase subunit PabA from ADCS by two different approaches, namely a computational and a data-driven one. Both approaches resulted in PabA variants that bound TrpEx with higher affinity than PabB. Hence, we have accomplished a reprogramming of protein-protein interaction specificity that provides insights into the evolutionary adaptation of protein interfaces.


Assuntos
Antranilato Sintase/química , Carbono-Carbono Liases/química , Proteínas de Escherichia coli/química , Transaminases/química , Substituição de Aminoácidos , Antranilato Sintase/genética , Antranilato Sintase/metabolismo , Sítios de Ligação , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Transaminases/genética , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA