Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 134: 112-124, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35307283

RESUMO

In brown algae, the extracellular matrix (ECM) and its constitutive polymers play crucial roles in specialized functions, including algal growth and development. In this review we offer an integrative view of ECM construction in brown algae. We briefly report the chemical composition of its main constituents, and how these are interlinked in a structural model. We examine the ECM assembly at the tissue and cell level, with consideration on its structure in vivo and on the putative subcellular sites for the synthesis of its main constituents. We further discuss the biosynthetic pathways of two major polysaccharides, alginates and sulfated fucans, and the progress made beyond the candidate genes with the biochemical validation of encoded proteins. Key enzymes involved in the elongation of the glycan chains are still unknown and predictions have been made at the gene level. Here, we offer a re-examination of some glycosyltransferases and sulfotransferases from published genomes. Overall, our analysis suggests novel investigations to be performed at both the cellular and biochemical levels. First, to depict the location of polysaccharide structures in tissues. Secondly, to identify putative actors in the ECM synthesis to be functionally studied in the future.


Assuntos
Phaeophyceae , Phaeophyceae/genética , Phaeophyceae/química , Phaeophyceae/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Genoma , Matriz Extracelular/metabolismo
2.
J Phycol ; 57(4): 1356-1367, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33932028

RESUMO

We examined the ultrastructure of the cell wall and immunolocalization of alginates using specific antibodies against M-rich alginates and MG blocks during rhizoid formation in fucoid zygotes, Silvetia babingtonii. The thallus region of 24-h-old zygotes had a cell wall made of three layers with different fiber distribution. In the 12-h-old zygotes, three layers in the thallus were observed before rhizoid formation, namely the inner, middle, and outer layers. During rhizoid elongation, only the inner layer was apparent close to the rhizoid tip area. Immunoelectron microscopy detected M-rich blocks of alginate on the inner half of the cell wall, irrespective of the number of layers in the thallus and rhizoid regions. The MG blocks were seen to cover a slightly wider area than M-rich alginate blocks. It was suggested that parts of M in mannuronan would be rapidly converted to G, and MG-blocks are generated. Transcriptome analysis was performed using 3 -, 10 -, and 24-h-old zygotes after fertilization to examine the relationship between gene expression and alginate synthesis over time. The expression of two mannuronan C5-epimerase homologs that convert mannuronic acid into guluronic acid in alginates was upregulated or downregulated over the course of the examination.


Assuntos
Phaeophyceae , Zigoto , Parede Celular
3.
J Phycol ; 57(3): 742-753, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33432598

RESUMO

The haploid-diploid life cycle of the filamentous brown alga Ectocarpus involves alternation between two independent and morphologically distinct multicellular generations, the sporophyte and the gametophyte. Deployment of the sporophyte developmental program requires two TALE homeodomain transcription factors OUROBOROS and SAMSARA. In addition, the sporophyte generation has been shown to secrete a diffusible factor that can induce uni-spores to switch from the gametophyte to the sporophyte developmental program. Here, we determine optimal conditions for production, storage, and detection of this diffusible factor and show that it is a heat-resistant, high molecular weight molecule. Based on a combined approach involving proteomic analysis of sporophyte-conditioned medium and the use of biochemical tools to characterize arabinogalactan proteins, we present evidence that sporophyte-conditioned medium contains AGP epitopes and suggest that the diffusible factor may belong to this family of glycoproteins.


Assuntos
Células Germinativas Vegetais , Phaeophyceae , Haploidia , Plantas , Proteômica
4.
Glycobiology ; 26(9): 973-983, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27026155

RESUMO

Mannuronan C5-epimerases (ManC5-Es) catalyze in brown algae the remodeling of alginate, a major cell-wall component which is involved in many biological functions in these organisms. ManC5-Es are present as large multigenic families in brown algae, likely indicating functional specificities and specializations. ManC5-Es control the distribution pattern of (1-4) linked ß-d-mannuronic acid (M) and α-l-guluronic acid (G) residues in alginates, giving rise to widely different polysaccharide compositions and sequences, depending on tissue, season, age, or algal species. As such they are also a source of powerful new tools for the biotechnological and enzymatic processing of alginates, to match the growing interest for food hydrocolloids and in biomedical and nanotechnological applications. We report here the first heterologous production of a ManC5-E of brown algal origin that is successfully refolded in an active form. The activity was measured by 1H NMR and by an indirect enzymatic assay using a known bacterial alginate lyase. The transcript expression as a function of the developmental program of the brown alga Ectocarpus, together with the bioinformatic analyses of the corresponding gene context of this multigenic family, is also presented.


Assuntos
Carboidratos Epimerases/química , Parede Celular/enzimologia , Phaeophyceae/enzimologia , Polissacarídeos/biossíntese , Alginatos/metabolismo , Sequência de Aminoácidos , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Parede Celular/química , Parede Celular/genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Espectroscopia de Ressonância Magnética , Phaeophyceae/genética , Polissacarídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
New Phytol ; 209(4): 1428-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26667994

RESUMO

Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes.


Assuntos
Epitopos/metabolismo , Fucus/crescimento & desenvolvimento , Fucus/genética , Mucoproteínas/metabolismo , Sequência de Aminoácidos , Divisão Celular/efeitos da radiação , Parede Celular/metabolismo , Parede Celular/efeitos da radiação , Fucus/efeitos da radiação , Genes de Plantas , Genoma , Indicadores e Reagentes , Luz , Modelos Biológicos , Mucoproteínas/química , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Homologia de Sequência do Ácido Nucleico , Zigoto/metabolismo
6.
J Exp Bot ; 67(21): 6089-6100, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27811078

RESUMO

Zygotes from Fucus species have been used extensively to study cell polarization and rhizoid outgrowth, and in this model system cell wall deposition aligns with the establishment of polarity. Monoclonal antibodies are essential tools for the in situ analysis of cell wall glycans, and here we report the characteristics of six monoclonal antibodies to alginates (BAM6-BAM11). The use of these, in conjunction with monoclonal antibodies to brown algal sulfated fucans, has enabled the study of the developmental dynamics of the Fucus zygote cell walls. Young zygotes are spherical and all alginate epitopes are deposited uniformly following cellulose deposition. At germination, sulfated fucans are secreted in the growing rhizoid wall. The redistribution of cell wall epitopes was investigated during treatments that cause reorientation of the growth axis (change in light direction) or disrupt rhizoid development (arabinogalactan-protein-reactive Yariv reagent). Alginate modeling was drastically impaired in the latter, and both treatments cause a redistribution of highly sulfated fucan epitopes. The dynamics of cell wall glycans in this system have been visualized in situ for the first time, leading to an enhanced understanding of the early developmental mechanisms of Fucus species. These sets of monoclonal antibodies significantly extend the available molecular tools for brown algal cell wall studies.


Assuntos
Parede Celular/metabolismo , Fucus/metabolismo , Sementes/metabolismo , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Fucus/crescimento & desenvolvimento , Germinação/fisiologia , Sementes/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 110(13): 5247-52, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23503846

RESUMO

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Assuntos
Chondrus/genética , Evolução Molecular , Genes de Plantas , Sequência de Bases , MicroRNAs/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , RNA de Plantas/genética
8.
Anal Chem ; 87(2): 1042-9, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25495706

RESUMO

Extreme ultraviolet photon activation tandem mass spectrometry (MS) at 69 nm (18 eV) was used to characterize mixtures of oligo-porphyrans, a class of highly sulfated oligosaccharides. Porphyrans, hybrid polymers whose structures are far from known, continue to provide a challenge for analytical method development. Activation by 18 eV photons led to a rich fragmentation of the oligo-porphyrans, with many cross-ring and glycosidic cleavages. In contrast to multistage MSn strategies such as activated electron photodetachment dissociation, a single step of irradiation by energetic UV of multiply charged anions led to a complete fragmentation of the oligo-porphyrans. In both ionization modes, the sulfate groups were retained on the backbone, which allowed the pattern of these modifications along the porphyran backbone to be described in unprecedented detail. Many structures released by the enzymatic degradation of the porphyran were completely resolved, including isomers. This work extends the existing knowledge of the structure of porphyrans. In addition, it provides a new demonstration of the potential of activation by high-energy photons for the structural analysis of oligosaccharides, even in unseparated mixtures, with a particular focus on sulfated compounds.


Assuntos
Parede Celular/química , Oligossacarídeos/química , Fótons , Porphyra/química , Sefarose/análogos & derivados , Sulfatos/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Íons , Sefarose/química
9.
Ann Bot ; 114(6): 1203-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24875633

RESUMO

BACKGROUND AND AIMS: Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. METHODS: Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. KEY RESULTS: The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. CONCLUSIONS: The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae.


Assuntos
Parede Celular/química , Matriz Extracelular/metabolismo , Phaeophyceae/química , Polissacarídeos/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Celulose/metabolismo , Fucose/metabolismo , Modelos Estruturais , Phaeophyceae/metabolismo , Phaeophyceae/ultraestrutura
10.
Proc Natl Acad Sci U S A ; 107(34): 15293-8, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696902

RESUMO

Cell wall degrading enzymes have a complex molecular architecture consisting of catalytic modules and noncatalytic carbohydrate-binding modules (CBMs). The function of CBMs in cell wall degrading processes is poorly understood. Here, we have evaluated the potential enzyme-targeting function of CBMs in the context of intact primary and secondary cell wall deconstruction. The capacity of a pectate lyase to degrade pectic homogalacturonan in primary cell walls was potentiated by cellulose-directed CBMs but not by xylan-directed CBMs. Conversely, the arabinofuranosidase-mediated removal of side chains from arabinoxylan in xylan-rich and cellulose-poor wheat grain endosperm cell walls was enhanced by a xylan-binding CBM but less so by a crystalline cellulose-specific module. The capacity of xylanases to degrade xylan in secondary cell walls was potentiated by both xylan- and cellulose-directed CBMs. These studies demonstrate that CBMs can potentiate the action of a cognate catalytic module toward polysaccharides in intact cell walls through the recognition of nonsubstrate polysaccharides. The targeting actions of CBMs therefore have strong proximity effects within cell wall structures, explaining why cellulose-directed CBMs are appended to many noncellulase cell wall hydrolases.


Assuntos
Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Celulose/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Pisum sativum/metabolismo , Pectinas/metabolismo , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Nicotiana/metabolismo , Triticum/metabolismo , Xilanos/metabolismo
11.
Mar Biotechnol (NY) ; 25(4): 519-536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354383

RESUMO

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H. werneckii, successfully cloned and overexpressed in a bacterial host, which possesses higher affinity for bromide (Km = 26 µM) than chloride (Km = 237 mM). The enzyme was biochemically characterized, and we have evaluated its potential for biocatalysis by determining its stability and tolerance in organic solvents. We also describe its potential three-dimensional structure by building a model using the AlphaFold 2 artificial intelligence tool. This model shows some conservation of the 3D structure of the active site compared to the vanadium chloroperoxidase from C. inaequalis but it also highlights some differences in the active site entrance and the volume of the active site pocket, underlining its originality.


Assuntos
Ascomicetos , Cloreto Peroxidase , Exophiala , Fontes Hidrotermais , Cloreto Peroxidase/genética , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Exophiala/metabolismo , Saccharomyces cerevisiae/metabolismo , Vanádio/metabolismo , Inteligência Artificial , Ascomicetos/genética
12.
Proc Natl Acad Sci U S A ; 106(9): 3065-70, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19218457

RESUMO

Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-beta-D-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Delta4,5-anhydrogalaturonic acid (Delta4,5-GalA). Delta4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands.


Assuntos
Galectina 3/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Metabolismo dos Carboidratos , Carboidratos/química , Adesão Celular , Parede Celular/enzimologia , Galectina 3/química , Galectina 3/classificação , Galectina 3/genética , Ligantes , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Ligação Proteica , Especificidade por Substrato , Termodinâmica , Ácidos Urônicos/química
13.
Plant J ; 58(3): 413-22, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19144002

RESUMO

The capacity of four xylan-directed probes (carbohydrate-binding modules CfCBM2b-1-2 and CjCBM15; monoclonal antibodies LM10 and LM11) to recognize xylan polysaccharides in primary and secondary cell walls of tobacco stem sections has been determined. Enzymatic removal of pectic homogalacturonan revealed differential recognition of xylans in restricted regions of cortical primary cell walls. Monoclonal antibody binding to these exposed xylans was more sensitive to xylanase action than carbohydrate-binding module (CBM) binding. In contrast, the recognition of xylans by CBMs in secondary cell walls of the same organ was more sensitive to xylanase action than the recognition of xylans by the monoclonal antibodies. A methodology was developed to quantify indirect immunofluorescence intensities, and to evaluate xylanase impacts. The four xylan probes were also used to detect xylan populations in chromatographic separations of solubilized cell wall materials from tobacco stems. Altogether, these observations reveal the heterogeneity of the xylans in plant cell walls. They indicate that although CBM and antibody probes can exhibit similar specificities against solubilized polymers, they can have differential capacities for xylan recognition in muro, and that the access of molecular probes and enzymes to xylan epitopes/ligands also varies between primary and secondary cell walls that are present in the same organ.


Assuntos
Parede Celular/metabolismo , Caules de Planta/citologia , Xilanos/metabolismo , Cromatografia por Troca Iônica , Endo-1,4-beta-Xilanases/metabolismo , Ensaio de Imunoadsorção Enzimática , Microscopia de Fluorescência , Sondas Moleculares , Pectinas/metabolismo , Caules de Planta/metabolismo , Especificidade por Substrato , Nicotiana/citologia , Nicotiana/metabolismo
14.
Microb Cell Fact ; 9: 45, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20546566

RESUMO

BACKGROUND: The production of stable and soluble proteins is one of the most important steps prior to structural and functional studies of biological importance. We investigated the parallel production in a medium throughput strategy of genes coding for proteins from various marine organisms, using protocols that involved recombinatorial cloning, protein expression screening and batch purification. This strategy was applied in order to respond to the need for post-genomic validation of the recent success of a large number of marine genomic projects. Indeed, the upcoming challenge is to go beyond the bioinformatic data, since the bias introduced through the genomes of the so called model organisms leads to numerous proteins of unknown function in the still unexplored world of the oceanic organisms. RESULTS: We present here the results of expression tests for 192 targets using a 96-well plate format. Genes were PCR amplified and cloned in parallel into expression vectors pFO4 and pGEX-4T-1, in order to express proteins N-terminally fused to a six-histidine-tag and to a GST-tag, respectively. Small-scale expression and purification permitted isolation of 84 soluble proteins and 34 insoluble proteins, which could also be used in refolding assays. Selected examples of proteins expressed and purified to a larger scale are presented. CONCLUSIONS: The objective of this program was to get around the bottlenecks of soluble, active protein expression and crystallization for post-genomic validation of a number of proteins that come from various marine organisms. Multiplying the constructions, vectors and targets treated in parallel is important for the success of a medium throughput strategy and considerably increases the chances to get rapid access to pure and soluble protein samples, needed for the subsequent biochemical characterizations. Our set up of a medium throughput strategy applied to genes from marine organisms had a mean success rate of 44% soluble protein expression from marine bacteria, archaea as well as eukaryotic organisms. This success rate compares favorably with other protein screening projects, particularly for eukaryotic proteins. Several purified targets have already formed the base for experiments aimed at post-genomic validation.


Assuntos
Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Eucariotos/genética , Animais , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Biologia Computacional , Flavobacteriaceae/genética , Ensaios de Triagem em Larga Escala , Plasmídeos/genética , Plasmídeos/metabolismo , Pyrococcus abyssi/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Dourada/genética
15.
Front Plant Sci ; 11: 1277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013948

RESUMO

Brown algae (Phaeophyceae) are multicellular photoautrophic organisms and the largest biomass producers in coastal regions. A variety of observations indicate that their extracellular matrix (ECM) is involved with screening of salts, development, cell fate selection, and defense responses. It is likely that these functionalities are related to its constitutive structures. The major components of the ECM of brown algae are ß-glucans, alginates, and fucose-containing sulfated polysaccharides. The genus Ectocarpus comprises a wide range of species that have adapted to different environments, including isolates of Ectocarpus subulatus, a species highly resistant to low salinity. Previous studies on a freshwater strain of E. subulatus indicated that the sulfate remodeling of fucans is related to the external salt concentration. Here we show that the sulfate content of the surrounding medium is a key parameter influencing both the patterning of the alga and the occurrence of the BAM4 sulfated fucan epitope in walls of apical cells. These results indicate that sulfate uptake and incorporation in the sulfated fucans from apical cells is an essential parameter to sustain tip growth, and we discuss its influence on the architectural plasticity of Ectocarpus.

16.
Methods Mol Biol ; 2149: 351-364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617945

RESUMO

Plant and algal cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in these materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant and marine algal materials and also describe treatments that can provide information on the masking of polysaccharides that may prevent detection. These masking phenomena may indicate potential interactions between sets of cell wall polysaccharides and methods to uncover them are an important aspect of cell wall immunocytochemistry.


Assuntos
Anticorpos Monoclonais/metabolismo , Organismos Aquáticos/química , Arabidopsis/química , Parede Celular/química , Polissacarídeos/análise , Parede Celular/ultraestrutura , Laminaria/química , Proteínas Recombinantes/metabolismo , Resinas Vegetais/química , Fixação de Tecidos , Ceras/química
17.
Bio Protoc ; 10(18): e3753, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659412

RESUMO

The brown alga Ectocarpus has a haploid-diploid life cycle that involves alternation between two multicellular generations, the sporophyte and the gametophyte. Life cycle generation is not determined by ploidy but by a genetic system that includes two different three amino acid loop extension homeodomain transcription factors called OUROBOROS and SAMSARA. In addition, sporophytes have been shown to secrete a diffusible factor into the medium that can induce gametophyte initial cells to switch from the gametophyte to the sporophyte developmental program. The protocol presented here describes how to produce sporophyte-conditioned medium containing the diffusible sporophyte-inducing factor and how to assay for activity of the factor using a meio-spore-based bioassay. The protocol, which describes how several steps of these procedures can be optimised, will represent a useful tool for future work aimed at characterising the diffusible factor and investigating its mode of action.

18.
Mar Genomics ; 52: 100740, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31937506

RESUMO

Brown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.


Assuntos
Genoma/genética , Phaeophyceae/genética , Estresse Fisiológico/genética , Proteínas de Algas/genética , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Vitória
19.
Biochem J ; 412(3): 535-44, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18315526

RESUMO

The GSTs (glutathione transferases) are involved in the detoxification of a wide variety of hydrophobic substrates. These enzymes have been found in virtually all types of organisms, including plants, animals, nematodes and bacteria. In the present study, we report the molecular and biochemical characterization of algal GSTs. Phylogenetic analysis showed that most of them were distinct from previously described GST classes, but were most closely related to the Sigma class. Profiling of GST genes from the red alga Chondrus crispus and brown alga Laminaria digitata was undertaken after different chemical treatments and showed that they displayed contrasting patterns of transcription. Recombinant algal GST from both species showed transferase activities against the common substrates aryl halides, but also on the alpha,beta-unsaturated carbonyl 4-hydroxynonenal. Also, they exhibit significant peroxidation towards organic hydroperoxides, including oxygenated derivatives of polyunsaturated fatty acids. Among a range of compounds tested, Cibacron Blue was the most efficient inhibitor of algal GSTs identified.


Assuntos
Proteínas de Algas/química , Glutationa Transferase/química , Phaeophyceae/enzimologia , Rodófitas/enzimologia , Sequência de Aminoácidos , DNA Complementar/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Transcrição Gênica
20.
Biochim Biophys Acta ; 1771(5): 565-75, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17428728

RESUMO

Signaling cascades involving oxygenated derivatives (oxylipins) of polyunsaturated fatty acids (PUFAs) are known to operate in response to external stimuli. The marine red alga Chondrus crispus uses both oxygenated derivatives of C18 (octadecanoids) and C20 (eicosanoids) PUFAs as developmental or defense hormones. The present study demonstrates that methyljasmonate (MeJA) triggers a cascade of oxidation of PUFAs leading to the synthesis of prostaglandins and other oxygenated fatty acids. As a result of a lipoxygenase-like activation, MeJA induces a concomitant accumulation of 13-hydroxy-9Z,11E-octadecadienoic acid (13-HODE) and 13-oxo-9Z,11E-octadecadienoic acid (13-oxo-ODE) in a dose-dependent manner in C. crispus. Furthermore, MeJA increases the level of mRNA encoding a gluthatione S-transferase and induces the activity of a new enzyme catalyzing the regio- and stereoselective bisallylic hydroxylation of polyunsaturated fatty acids from C(18) to C(22). The enzyme selectively oxidized the omega minus 7 carbon position (omega-7) and generated the stereoselective (R)-hydroxylated metabolites with a large enantiomeric excess. The enzyme specificity for the fatty acid recognition was not dependent of the position of double bonds but at least requires a methylene interrupted double bond 1,4-pentadiene motif involving the omega-7 carbon.


Assuntos
Acetatos/farmacologia , Proteínas de Algas/metabolismo , Chondrus/enzimologia , Ciclopentanos/farmacologia , Ácidos Graxos Insaturados/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Algas/genética , Chondrus/efeitos dos fármacos , Primers do DNA , Dinoprostona/análogos & derivados , Dinoprostona/biossíntese , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Ácido Linoleico/metabolismo , Oxigenases de Função Mista/genética , Oxilipinas , Reação em Cadeia da Polimerase , Prostaglandinas A/biossíntese , RNA/genética , RNA/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA