Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10490-10499, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801717

RESUMO

Al4SiC4 is a ternary wide-band-gap semiconductor with a high strength-to-weight ratio and excellent oxidation resistance. It consists of slabs of Al4C3 separated by SiC layers with the space group of P63mc. The space group allows Si to occupy two different 2a Wykoff sites, with previous studies reporting that Si occupies only one of the two sites, giving it an ordered structure. Another hitherto unexplored possibility is that Si can be randomly distributed on both 2a sites. In this work, we revisit the published ordered crystal structure using experimental methods and density functional theory (DFT). Al4SiC4 was synthesized by high-temperature sintering at 1800 °C from a powder mixture of Al4C3 and SiC. Neutron diffraction confirmed that Al4SiC4 crystallized with the space group of P63mc, with diffraction patterns that could be fitted to both the ordered and the disordered structures. Scanning transmission electron microscopy, however, provided clear evidence supporting the latter, with DFT calculations further confirming that it is 0.16 eV lower in energy per Al4SiC4 formula unit than the former. TEM analysis revealed Al vacancies in some of the atomic layers that can introduce p-type doping and direct band gaps of 0.7 and 1.2 eV, agreeing with our optical measurements. Finally, we propose that although the calculated formation energy of the Al vacancies is high, the vacancies are stabilized by entropy effects at the high synthesis temperature. This indicates that the cooling procedure after high-temperature synthesis can be important in determining the vacancy content and the electronic properties of Al4SiC4.

2.
Inorg Chem ; 61(9): 4092-4101, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35191302

RESUMO

High-entropy materials, with complex compositions and unique cocktail characteristics, have recently drawn significant attention. Additionally, a family of sodium super ion conductors (NASICONs)-structured phosphates in energy storage areas shows a comprehensive application for traditional alkaline ion batteries and, in particular, solid-state electrolytes. However, there is no precedent in fabricating this kind of NASICON-type high-entropy phase. Here, we report the successful fabrication of two well-crystallized high-entropy phosphates, namely, Na3(Ti0.2V0.2Mn0.2Cr0.2Zr0.2)2(PO4)3 (HE-N3M2P3) and Na(Ti0.2V0.2Mn0.2Cr0.2Zr0.2)2PO4Ox (HE-NMP). The prepared materials in which the transition metals (TMs) of Ti, V, Mn, Cr, and Zr occupy the same 12c Wykoff position can form a structure analogous to R3̅c Na3V2(PO4)3 that is carefully determined by X-ray diffraction, neutron diffraction, and transmission electron microscopy. Further, their performance for sodium ion batteries and sodium-based solid-state electrolytes was evaluated. The HE-N3M2P3 might exhibit a promising electrochemical performance for sodium storage in terms of its structure resembling that of Na3V2(PO4)3. Meanwhile, the HE-NMP shows considerable electrochemical activity with numerous broad redox ranges during extraction and insertion of Na+, related to the coexistence of several TM elements. The evaluated temperature-dependent ionic conductivity for HE-NMP solid electrolyte varies from 10-6 to 10-5 S cm-1 from room temperature to 398.15 K, offering high potential for energy storage applications as a new high-entropy system.

3.
ACS Omega ; 8(33): 30727-30735, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636972

RESUMO

The magnetic properties of TbMgNi4-xCox intermetallic compounds and selected hydrides and deuterides of this system have been studied by various techniques, including magnetic measurements, in situ X-ray and neutron powder diffraction. The intermetallic compounds crystallize in a SnMgCu4-type structure and magnetically order below a Curie temperature (TC), which increases exponentially with the Co content. This can be due to the ordering of the Co sublattice. On the other hand, the insertion of D or H in TbMgNiCo3 strongly decreases TC. The X-ray diffraction measurements versus temperature reveal cell volume minima at TC for the compounds with x = 1-3 without any hints of the structure change. The analysis of the neutron diffraction patterns for the intermetallics with x = 2 and 3 indicates a slightly canted ferrimagnetic structure below TC. The Tb moments refined at 16 K are 4.1(2) µB/Tb for x = 2, and 6.2(1) µB/Tb for x = 3, which are smaller than the free ion value (9.5 µB/Tb). This reduction can be due to the influence of temperature but also reveals the crystal field effect. As Ni and Co occupy statistically the same Wyckoff site, an average Ni/Co moment was refined, leading to 1.7(2) µB/atom for x = 2 and 1.8(1) µB/atom for x = 3 at 16 K. This moment is slightly canted compared to the Tb moment.

4.
Materials (Basel) ; 13(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947796

RESUMO

Due to their superb mechanical properties and high specific mass, tungsten heavy alloys are used in demanding applications, such as kinetic penetrators, gyroscope rotors, or radiation shielding. However, their structure, consisting of hard tungsten particles embedded in a soft matrix, makes the deformation processing a challenging task. This study focused on the characterization of deformation behavior during thermomechanical processing of a WNiCo tungsten heavy alloy (THA) via the method of rotary swaging at various temperatures. Emphasis is given to microstrain development and determination of the activated slip systems and dislocation density via neutron diffraction. The analyses showed that the grains of the NiCo2W matrix refined significantly after the deformation treatments. The microstrain was higher in the cold swaged sample (44.2 × 10-4). Both the samples swaged at 20 °C and 900 °C exhibited the activation of edge dislocations with <111> {110} or <110> {111} slip systems, and/or screw dislocations with <110> slip system in the NiCo2W matrix. Dislocation densities were determined and the results were correlated with the final mechanical properties of the swaged bars.

5.
Materials (Basel) ; 12(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817494

RESUMO

Advanced thermomechanical hot rolling is becoming a widely used technology for the production of fine-grained spring steel. Different rapid phase transformations during the inductive heat treatment of such steel causes the inhomogeneous mixture of martensitic, bainitic, and austenitic phases that affects the service properties of the steel. An important task is to assess the amount of retained austenite and its distribution over the cross-section of the inductive quenched and tempered wire in order to evaluate the mechanical properties of the material. Three different analytical methods were used for the comparative quantitative assessment of the amount of retained austenite in both the core and rim areas of the sample cross-section: neutron diffraction-for the bulk of the material, Mössbauer spectroscopy-for measurement in a surface layer, and the metallographic investigations carried by the EBSD. The methods confirmed the excessive amount of retained austenite in the core area that could negatively affect the plasticity of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA