Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Yeast ; 36(7): 439-448, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31035304

RESUMO

Candida krusei is a pathogenic yeast species that is phylogenetically outside both of the well-studied yeast groups, whole genome duplication and CUG. Like all other yeast species, it needs to accumulate high amounts of potassium cations, which are needed for proliferation and many other cell functions. A search in the sequenced genomes of nine C. krusei strains revealed the existence of two highly conserved genes encoding putative potassium uptake systems. Both of them belong to the TRK family, whose members have been found in all the sequenced genomes of species from the Saccharomycetales subclade. Analysis and comparison of the two C. krusei Trk sequences revealed all the typical features of yeast Trk proteins but also an unusual extension of the CkTrk2 hydrophilic N-terminus. The expression of both putative CkTRK genes in Saccharomyces cerevisiae lacking its own potassium importers showed that only CkTrk1 is able to complement the absence of S. cerevisiae's own transporters and provide cells with a sufficient amount of potassium. Interestingly, a portion of the CkTrk1 molecules were localized to the vacuolar membrane. The presence of CkTrk2 had no evident phenotype, due to the fact that this protein was not correctly targeted to the S. cerevisiae plasma membrane. Thus, CkTrk2 is the first studied yeast Trk protein to date that was not properly recognized and targeted to the plasma membrane upon heterologous expression in S. cerevisiae.


Assuntos
Candida/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas Fúngicas/metabolismo , Potássio/metabolismo , Candida/classificação , Candida/genética , Candida/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Proteínas Fúngicas/genética , Teste de Complementação Genética , Variação Genética , Genoma Fúngico/genética , Transporte de Íons , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/classificação , Saccharomycetales/genética
2.
Yeast ; 30(10): 395-402, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24251329

RESUMO

Cation­chloride co-transporters serve to transport Cl­ and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation­chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation­chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali­metal cation exporters Nha1 and Ena1-5 and the vacuolar cation­chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali­metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation­chloride co-transporters.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cátions/metabolismo , Membrana Celular/metabolismo , Cloretos/metabolismo , Deleção de Genes , Humanos , Transporte de Íons , Cloreto de Lítio/metabolismo , Fenótipo , Cloreto de Potássio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Especificidade por Substrato , Simportadores/genética
3.
FEMS Microbiol Lett ; 362(3): 1-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25673653

RESUMO

Small and uncharged glycerol is an important molecule for yeast metabolism and osmoadaptation. Using a series of S. cerevisiae BY4741-derived mutants lacking genes encoding a glycerol exporter (Fps1p) and/or importer (Stl1p) and/or the last kinase of the HOG pathway (Hog1p), we studied their phenotypes and various physiological characteristics with the aim of finding new roles for glycerol transporters. Though the triple mutant hog1Δ stl1Δ fps1Δ was viable, it was highly sensitive to various stresses. Our results showed that the function of both Stl1p and Fps1p transporters contributes to the cell ability to survive during the transfer into the state of anhydrobiosis, and that the deletion of FPS1 decreases the cell's tolerance of hyperosmotic stress. The deletion of STL1 results in a slight increase in cell size and in a substantial increase in intracellular pH. Taken together, our results suggest that the fluxes of glycerol in both directions across the plasma membrane exist in yeast cells simultaneously, and the export or import predominates according to the actual specific conditions.


Assuntos
Glicerol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Transporte Biológico , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Fenótipo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
4.
FEMS Microbiol Lett ; 350(1): 28-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24267958

RESUMO

Yeasts grow at very different potassium concentrations, adapting their intracellular cation levels to changes in the external environment. Potassium homeostasis is maintained with the help of several transporters mediating the uptake and efflux of potassium with various affinities and mechanisms. In the model yeast Saccharomyces cerevisiae, two uptake systems, Trk1 and Trk2, are responsible for the accumulation of a relatively high intracellular potassium content (200-300 mM) and the efflux of surplus potassium is mediated by the Tok1 channel and active exporters Ena ATPase and Nha1 cation/proton antiporter. Using a series of deletion mutants, we studied the role of individual potassium transporters in yeast cell resistance to dehydration. The Trk2 transporter (whose role in S. cerevisiae physiology was not clear) is important for cell viability in the stationary phase of growth and, moreover, it plays a crucial role in the yeast survival of dehydration/rehydration treatments. Mutants lacking the TRK2 gene accumulated significantly lower amounts of potassium ions in the stationary culture growth phase, and these lower amounts correlated with decreased resistance to dehydration/rehydration stress. Our results showed Trk2 to be the major potassium uptake system in stationary cells, and potassium content to be a crucial parameter for desiccation survival.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Dessecação , Homeostase , Viabilidade Microbiana , Potássio/análise , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA