Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Histochem Cell Biol ; 157(5): 513-524, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229169

RESUMO

Animal models and clinical studies suggest an influence of angiotensin II (AngII) on the pathogenesis of liver diseases via the renin-angiotensin system. AngII application increases portal blood pressure, reduces bile flow, and increases permeability of liver tight junctions. Establishing the subcellular localization of angiotensin II receptor type 1 (AT1R), the main AngII receptor, helps to understand the effects of AngII on the liver. We localized AT1R in situ in human and porcine liver and porcine gallbladder by immunohistochemistry. In order to do so, we characterized commercial anti-AT1R antibodies regarding their capability to recognize heterologous human AT1R in immunocytochemistry and on western blots, and to detect AT1R using overlap studies and AT1R-specific blocking peptides. In hepatocytes and canals of Hering, AT1R displayed a tram-track-like distribution, while in cholangiocytes AT1R appeared in a honeycomb-like pattern; i.e., in liver epithelia, AT1R showed an equivalent distribution to that in the apical junctional network, which seals bile canaliculi and bile ducts along the blood-bile barrier. In intrahepatic blood vessels, AT1R was most prominent in the tunica media. We confirmed AT1R localization in situ to the plasma membrane domain, particularly between tight and adherens junctions in both human and porcine hepatocytes, cholangiocytes, and gallbladder epithelial cells using different anti-AT1R antibodies. Localization of AT1R at the junctional complex could explain previously reported AngII effects and predestines AT1R as a transmitter of tight junction permeability.


Assuntos
Bile , Receptor Tipo 1 de Angiotensina , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Bile/metabolismo , Western Blotting , Humanos , Peptídeos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina , Suínos
2.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886000

RESUMO

Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age-dependent, cardiac-specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS-derivative sphinganine-1-phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P-dependent increase in transcription using an RNA polymerase II inhibitor, block DHS-induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Variação Genética , Instabilidade Genômica , Miocárdio/metabolismo , Esfingolipídeos/metabolismo , Animais , Curcumina/química , Curcumina/farmacologia , Dano ao DNA/efeitos dos fármacos , Metabolismo Energético , Epigênese Genética , Evolução Molecular , Fundulidae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Modelos Moleculares , Miócitos Cardíacos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relação Estrutura-Atividade , Vertebrados/genética , Vertebrados/metabolismo
3.
Biochim Biophys Acta Bioenerg ; 1859(9): 925-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777685

RESUMO

BACKGROUND AND PURPOSE: Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. EXPERIMENTAL APPROACH: Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. KEY RESULTS: Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. CONCLUSION AND IMPLICATIONS: Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Inflamação Neurogênica/prevenção & controle , Tiamina/farmacologia , Animais , Metabolismo Energético , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Inflamação Neurogênica/etiologia , Inflamação Neurogênica/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Complexo Vitamínico B/farmacologia
4.
Cells Tissues Organs ; 197(4): 249-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23343517

RESUMO

Compelling evidence for the existence of somatic stem cells in the heart of different mammalian species has been provided by numerous groups; however, so far it has not been possible to maintain these cells as self-renewing and phenotypically stable clonal cell lines in vitro. Thus, we sought to identify a surrogate stem cell niche for the isolation and persistent maintenance of stable clonal cardiovascular progenitor cell lines, enabling us to study the mechanism of self-renewal and differentiation in these cells. Using postnatal murine hearts with a selectable marker as the stem cell source and embryonic stem cells and leukemia inhibitory factor (LIF)-secreting fibroblasts as a surrogate niche, we succeeded in the isolation of stable clonal cardiovascular progenitor cell lines. These cell lines self-renew in an LIF-dependent manner. They express both stemness transcription factors Oct4, Sox2, and Nanog and early myocardial transcription factors Nkx2.5, GATA4, and Isl-1 at the same time. Upon LIF deprivation, they exclusively differentiate to functional cardiomyocytes and endothelial and smooth muscle cells, suggesting that these cells are mesodermal intermediates already committed to the cardiogenic lineage. Cardiovascular progenitor cell lines can be maintained for at least 149 passages over 7 years without phenotypic changes, in the presence of LIF-secreting fibroblasts. Isolation of wild-type cardiovascular progenitor cell lines from adolescent and old mice has finally demonstrated the general feasibility of this strategy for the isolation of phenotypically stable somatic stem cell lines.


Assuntos
Células-Tronco Embrionárias/citologia , Fator Inibidor de Leucemia/metabolismo , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Técnicas Citológicas/métodos , Embrião de Mamíferos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Miócitos Cardíacos/metabolismo
5.
ESC Heart Fail ; 10(6): 3559-3572, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752740

RESUMO

AIMS: Mechanochemical signalling drives organogenesis and is highly conserved in mammal evolution. Regaining recovery in myocardial jeopardy by inducing principles linking cardiovascular therapy and clinical outcome has been the dream of scientists for decades. Concepts involving embryonic pathways to regenerate adult failing hearts became popular in the early millennium. Since then, abundant data on stem cell research have been published, never reaching widespread application in heart failure therapy. Another conceptual access, using mechanotransduction in cardiac veins to limit myocardial decay, is pressure-controlled intermittent coronary sinus occlusion (PICSO). Recently, we reported acute molecular signs and signals of PICSO activating regulatory miRNA and inducing cell proliferation mimicking cardiac development in adult failing hearts. According to a previously formulated hypothesis, 'embryonic recall', this study aimed to define molecular signals involved in endogenous heart repair during PICSO and study their relation to patient survival. METHODS AND RESULTS: We previously reported a study on the acute molecular effects of PICSO in an observational non-randomized study. Eight out of the thirty-two patients with advanced heart failure undergoing cardiac resynchronization therapy (CRT) were treated with PICSO. Survival was monitored over 10 years, and coronary sinus blood samples were collected during intervention before and after 20 min and tested for miRNA signalling and proliferation when co-cultured with cardiomyocytes. A numerically lower death rate post-CRT and PICSO as compared with control CRT only, and a non-significant reduction in all-cause mortality risk of 42% was observed (37.5% vs. 54.0%, relative risk = 0.58, 95% confidence interval: 0.17-2.05; P = 0.402). Four miRNAs involved in cell cycle, proliferation, morphogenesis, embryonic development, and apoptosis significantly increased concomitantly in survivors and PICSO compared with a decrease in non-survivors (hsa-miR Let7b, P < 0.01; hsa-miR- 421, P < 0.006; hsa-miR 363-3p, P < 0.03 and hsa-miR 19b-3p P < 0.01). In contrast, three miRNAs involved in proliferation and survival, determining cell fate, and recycling endosomes decreased in survivors and PICSO (hsa miR 101-3p, P < 0.03; hsa-miR 25-3p, P < 002; hsa-miR 30d-5p P < 0.04). In vitro cellular proliferation increased in survivors and lowered in non-survivors showing a pattern distinction, discriminating longevity according to up to 10-year survival in heart failure patients. CONCLUSIONS: This study proposes that generating regenerative signals observed during PICSO intervention relate to patient outcomes. Morphogenetic pathways induced by periods of flow reversal in cardiac veins in a domino-like pattern transform embryonic into regenerative signals. Studies supporting the conversion of mechanochemical signals into regenerative molecules during PICSO are warranted to substantiate predictive power on patient longevity, opening new therapeutic avenues in otherwise untreatable heart failure.


Assuntos
MicroRNA Circulante , Insuficiência Cardíaca , MicroRNAs , Adulto , Animais , Humanos , Miócitos Cardíacos/metabolismo , Mecanotransdução Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Insuficiência Cardíaca/terapia , Proliferação de Células , Mamíferos/metabolismo
6.
J Mol Cell Cardiol ; 53(3): 401-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22728218

RESUMO

Electrophysiological maturation and integration of transplanted cardiomyocytes are essential to enhance safety and efficiency of cell replacement therapy. Yet, little is known about these important processes. The aim of our study was to perform a detailed analysis of electrophysiological maturation and integration of transplanted cardiomyocytes. Fetal cardiomyocytes expressing enhanced green fluorescent protein were transplanted into cryoinjured mouse hearts. At 6, 9 and 12 days after transplantation, viable slices of recipient hearts were prepared and action potentials of transplanted and host cardiomyocytes within the slices were recorded by microelectrodes. In transplanted cells embedded in healthy host myocardium, action potential duration at 50% repolarization (APD50) decreased from 32.2 ± 3.3 ms at day 6 to 27.9 ± 2.6 ms at day 9 and 19.6 ± 1.6 ms at day 12. The latter value matched the APD50 of host cells (20.5 ± 3.2 ms, P=0.78). Integration improved in the course of time: 26% of cells at day 6 and 53% at day 12 revealed no conduction blocks up to a stimulation frequency of 10 Hz. APD50 was inversely correlated to the quality of electrical integration. In transplanted cells embedded into the cryoinjury, which showed no electrical integration, APD50 was 49.2 ± 4.3 ms at day 12. Fetal cardiomyocytes transplanted into healthy myocardium integrate electrically and mature after transplantation, their action potential properties after 12 days are comparable to those of host cardiomyocytes. Quality of electrical integration improves over time, but conduction blocks still occur at day 12 after transplantation. The pace of maturation correlates with the quality of electrical integration. Transplanted cells embedded in cryoinjured tissue still possess immature electrophysiological properties after 12 days.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Masculino , Camundongos , Miocárdio/citologia , Miócitos Cardíacos/transplante , Fatores de Tempo
7.
J Exp Med ; 203(10): 2315-27, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16954371

RESUMO

Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)-derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6-10-fold because of induction of proliferation on purification. Long-term engraftment (4-5 months) was observed when co-transplanting selected ES cell-derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell-derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells.


Assuntos
Células-Tronco Embrionárias/citologia , Contração Miocárdica/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Animais , Transplante de Medula Óssea , Primers do DNA , Eletrofisiologia , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Camundongos , Miócitos Cardíacos/citologia , Puromicina , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Cell Physiol Biochem ; 28(4): 579-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22178870

RESUMO

BACKGROUND/AIMS: Induced pluripotent stem (iPS) cells generated from accessible adult cells of patients with genetic diseases open unprecedented opportunities for exploring the pathophysiology of human diseases in vitro. Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited cardiac disorder that is caused by mutations in the cardiac ryanodine receptor type 2 gene (RYR2) and is characterized by stress-induced ventricular arrhythmia that can lead to sudden cardiac death in young individuals. The aim of this study was to generate iPS cells from a patient with CPVT1 and determine whether iPS cell-derived cardiomyocytes carrying patient specific RYR2 mutation recapitulate the disease phenotype in vitro. METHODS: iPS cells were derived from dermal fibroblasts of healthy donors and a patient with CPVT1 carrying the novel heterozygous autosomal dominant mutation p.F2483I in the RYR2. Functional properties of iPS cell derived-cardiomyocytes were analyzed by using whole-cell current and voltage clamp and calcium imaging techniques. RESULTS: Patch-clamp recordings revealed arrhythmias and delayed afterdepolarizations (DADs) after catecholaminergic stimulation of CPVT1-iPS cell-derived cardiomyocytes. Calcium imaging studies showed that, compared to healthy cardiomyocytes, CPVT1-cardiomyocytes exhibit higher amplitudes and longer durations of spontaneous Ca(2+) release events at basal state. In addition, in CPVT1-cardiomyocytes the Ca(2+)-induced Ca(2+)-release events continued after repolarization and were abolished by increasing the cytosolic cAMP levels with forskolin. CONCLUSION: This study demonstrates the suitability of iPS cells in modeling RYR2-related cardiac disorders in vitro and opens new opportunities for investigating the disease mechanism in vitro, developing new drugs, predicting their toxicity, and optimizing current treatment strategies.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Potenciais de Ação , Cálcio/metabolismo , Catecolaminas/metabolismo , Diferenciação Celular , Colforsina/metabolismo , AMP Cíclico/metabolismo , Eletrocardiografia , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cariotipagem , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patologia
9.
Stem Cells ; 27(1): 88-99, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18927478

RESUMO

Laminins form a large family of extracellular matrix (ECM) proteins, and their expression is a prerequisite for normal embryonic development. Herein we investigated the role of the laminin gamma1 chain for cardiac muscle differentiation and function using cardiomyocytes derived from embryonic stem cells deficient in the LAMC1 gene. Laminin gamma1 (-/-) cardiomyocytes lacked basement membranes (BM), whereas their sarcomeric organization was unaffected. Accordingly, electrical activity and hormonal regulation were found to be intact. However, the inadequate BM formation led to an increase of ECM deposits between adjacent cardiomyocytes, and this resulted in defects of the electrical signal propagation. Furthermore, we also found an increase in the number of pacemaker areas. Thus, although laminin and intact BM are not essential for cardiomyocyte development and differentiation per se, they are required for the normal deposition of matrix molecules and critical for intact electrical signal propagation.


Assuntos
Diferenciação Celular , Condutividade Elétrica , Células-Tronco Embrionárias/citologia , Laminina/deficiência , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Membrana Basal/metabolismo , Caderinas/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Camundongos , Regulação para Cima
10.
FASEB J ; 23(12): 4168-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19703934

RESUMO

Several types of terminally differentiated somatic cells can be reprogrammed into a pluripotent state by ectopic expression of Klf4, Oct3/4, Sox2, and c-Myc. Such induced pluripotent stem (iPS) cells have great potential to serve as an autologous source of cells for tissue repair. In the process of developing iPS-cell-based therapies, the major goal is to determine whether differentiated cells derived from iPS cells, such as cardiomyocytes (CMs), have the same functional properties as their physiological in vivo counterparts. Therefore, we differentiated murine iPS cells to CMs in vitro and characterized them by RT-PCR, immunocytochemistry, and electrophysiology. As key markers of cardiac lineages, transcripts for Nkx2.5, alphaMHC, Mlc2v, and cTnT could be identified. Immunocytochemical stainings revealed the presence of organized sarcomeric actinin but the absence of mature atrial natriuretic factor. We examined characteristics and developmental changes of action potentials, as well as functional hormonal regulation and sensitivity to channel blockers. In addition, we determined expression patterns and functionality of cardiac-specific voltage-gated Na+, Ca2+, and K+ channels at early and late differentiation stages and compared them with CMs derived from murine embryonic stem cells (ESCs) as well as with fetal CMs. We conclude that iPS cells give rise to functional CMs in vitro, with established hormonal regulation pathways and functionally expressed cardiac ion channels; CMs generated from iPS cells have a ventricular phenotype; and cardiac development of iPS cells is delayed compared with maturation of native fetal CMs and of ESC-derived CMs. This difference may reflect the incomplete reprogramming of iPS cells and should be critically considered in further studies to clarify the suitability of the iPS model for regenerative medicine of heart disorders.


Assuntos
Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/metabolismo , Animais , Eletrofisiologia Cardíaca , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 4 Semelhante a Kruppel , Camundongos , Agonistas Muscarínicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos
11.
Circulation ; 118(5): 507-17, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18625890

RESUMO

BACKGROUND: The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease- and human patient-specific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line. METHODS AND RESULTS: With the use of a standard embryoid body-based differentiation protocol for ES cells, iPS cells as well as ES cells were differentiated for 24 days. Although the analyzed iPS cell clone showed a delayed and less efficient formation of beating embryoid bodies compared with the ES cell line, the differentiation resulted in an average of 55% of spontaneously contracting iPS cell embryoid bodies. Analyses on molecular, structural, and functional levels demonstrated that iPS cell-derived cardiomyocytes show typical features of ES cell-derived cardiomyocytes. Reverse transcription polymerase chain reaction analyses demonstrated expression of marker genes typical for mesoderm, cardiac mesoderm, and cardiomyocytes including Brachyury, mesoderm posterior factor 1 (Mesp1), friend of GATA2 (FOG-2), GATA-binding protein 4 (GATA4), NK2 transcription factor related, locus 5 (Nkx2.5), T-box 5 (Tbx5), T-box 20 (Tbx20), atrial natriuretic factor (ANF), myosin light chain 2 atrial transcripts (MLC2a), myosin light chain 2 ventricular transcripts (MLC2v), alpha-myosin heavy chain (alpha-MHC), and cardiac troponin T in differentiation cultures of iPS cells. Immunocytology confirmed expression of cardiomyocyte-typical proteins including sarcomeric alpha-actinin, titin, cardiac troponin T, MLC2v, and connexin 43. iPS cell cardiomyocytes displayed spontaneous rhythmic intracellular Ca(2+) fluctuations with amplitudes of Ca(2+) transients comparable to ES cell cardiomyocytes. Simultaneous Ca(2+) release within clusters of iPS cell-derived cardiomyocytes indicated functional coupling of the cells. Electrophysiological studies with multielectrode arrays demonstrated functionality and presence of the beta-adrenergic and muscarinic signaling cascade in these cells. CONCLUSIONS: iPS cells differentiate into functional cardiomyocytes. In contrast to ES cells, iPS cells allow derivation of autologous functional cardiomyocytes for cellular cardiomyoplasty and myocardial tissue engineering.


Assuntos
Técnicas de Cultura de Células/métodos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Animais , Biomarcadores/metabolismo , Sinalização do Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Regulação para Baixo , Imunofluorescência , Genômica , Proteínas de Homeodomínio/genética , Potenciais da Membrana/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/fisiologia , Receptores Adrenérgicos beta 1/metabolismo , Receptores Muscarínicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/fisiologia
12.
Cell Physiol Biochem ; 23(1-3): 65-74, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19255501

RESUMO

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) might provide cells to repopulate injured myocardium. Electrical coupling of these cells to the host myocardium is a prerequisite for improved functionality. The aim of this study was to investigate electrical interaction of hESC-CMs with myocardial tissue and to identify factors challenging functional integration. Beating clusters containing hESC-CMs were cocultured in vitro with viable slices of late-stage embryonic murine ventricles. Field potentials recorded with micro-electrode arrays and video data were analyzed. The effects of heptanol, electrical pacing, beta-adrenergic, and muscarinic stimulation on coupling were studied. Beating clusters integrated morphologically and functionally resulting in a synchronized beating pattern after two to four days of coculture. Heptanol-induced conduction block between transplanted cells and host tissue and immunoreactivity for connexin43 suggested electrical coupling via gap junctions. Beta-adrenergic or muscarinic stimulation induced uncoupling and arrhythmias probably due to genetically determined differences of hormonal modulation of spontaneous beating rates of transplanted cells and host tissue. HESC-CMs can integrate functionally and develop synchronized beating. Interventions unraveling the different electrophysiological properties of transplanted and host tissue induce functional disintegration. Successful cellular replacement has to improve coupling but should also aim to transplant cardiomyocytes with similar electrophysiological properties as the host tissue.


Assuntos
Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular , Eletrofisiologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/ultraestrutura , Junções Comunicantes/metabolismo , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura
13.
Cell Physiol Biochem ; 24(1-2): 73-86, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19590195

RESUMO

AIMS: Induced pluripotent stem (iPS) cells have a developmental potential similar to that of blastocyst-derived embryonic stem (ES) cells and may serve as an autologous source of cells for tissue repair, in vitro disease modelling and toxicity assays. Here we aimed at generating iPS cell-derived cardiomyocytes (CMs) and comparing their molecular and functional characteristics with CMs derived from native murine ES cells. METHODS AND RESULTS: Beating cardiomyocytes were generated using a mass culture system from murine N10 and O9 iPS cells as well as R1 and D3 ES cells. Transcripts of the mesoderm specification factor T-brachyury and non-atrial cardiac specific genes were expressed in differentiating iPS EBs. Using immunocytochemistry to determine the expression and intracellular organisation of cardiac specific structural proteins we demonstrate strong similarity between iPS-CMs and ES-CMs. In line with a previous study electrophysiological analyses showed that hormonal response to beta-adrenergic and muscarinic receptor stimulation was intact. Action potential (AP) recordings suggested that most iPS-CMs measured up to day 23 of differentiation are of ventricular-like type. Application of lidocaine, Cs+, SEA0400 and verapamil+ nifedipine to plated iPS-EBs during multi-electrode array (MEA) measurements of extracellular field potentials and intracellular sharp electrode recordings of APs revealed the presence of I(Na), I(f), I(NCX), and I(CaL), respectively, and suggested their involvement in cardiac pacemaking, with I(CaL) being of major importance. Furthermore, iPS-CMs developed and conferred force to avitalized ventricular tissue that was responsive to beta-adrenergic stimulation. CONCLUSIONS: Our data demonstrate that the cardiogenic potential of iPS cells is comparable to that of ES cells and that iPS-CMs possess all fundamental functional elements of a typical cardiac cell, including spontaneous beating, hormonal regulation, cardiac ion channel expression and contractility. Therefore, iPS-CMs can be regarded as a potentially valuable source of cells for in vitro studies and cellular cardiomyoplasty.


Assuntos
Canais Iônicos/metabolismo , Contração Miocárdica , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Receptores Adrenérgicos beta/metabolismo , Potenciais de Ação/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Regulação da Expressão Gênica , Camundongos , Miócitos Cardíacos/fisiologia , Receptores Muscarínicos/metabolismo , Engenharia Tecidual
14.
Circ Res ; 101(5): 484-92, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17641227

RESUMO

In the present study, we investigated the electrophysiological maturation and integration of immature cardiomyocytes after transplantation; maturation and integration are essential to achieve the cardiac regeneration. Murine fetal cardiomyocytes (FCMs) (d12.5-d15.5) expressing enhanced green fluorescent protein under the control of the alpha-actin promoter were injected into cryoinjured areas and adjacent myocardium of cryoinjured mouse ventricles. Viable short axis tissue slices (thickness, 150 microm) of the ventricles were prepared 5 to 6 days after transplantation. Glass microelectrodes were used for measurements of action potentials in transplanted FCMs and host cardiomyocytes within the slices. Stimulation at frequencies of up to 10 Hz was performed via a unipolar electrode placed in viable host tissue. Transplanted FCMs could be distinguished clearly from host tissue by their green fluorescence and their electrophysiological properties: maximal upstroke velocity (V(max)) was significantly lower and action potential duration at 50% repolarization (APD(50)) was significantly longer compared with values of adult cardiomyocytes. Transplanted FCMs surrounded by cryoinjured tissue showed spontaneous electrical and contractile activity, which was in no case synchronous with host tissue. V(max) and APD(50) of these nonintegrated cells matched values of cultivated dissociated FCMs. In contrast, 82% of transplanted FCMs surrounded by viable host tissue were electrically integrated; ie, electrical and contractile activity was synchronous with host tissue and these cells had more mature action potential parameters (significantly higher V(max) and shorter APD(50)) compared with nonintegrated FCMs. In conclusion, electrophysiological maturation and integration of transplanted FCMs depend on an embedment in viable host myocardium. FCMs surrounded by cryoinjured tissue maintain physiological but immature AP properties.


Assuntos
Comunicação Celular/fisiologia , Transplante de Células/fisiologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sobrevivência Celular/fisiologia , Transplante de Células/patologia , Células Cultivadas , Eletrofisiologia , Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Microeletrodos , Miocárdio/patologia , Miócitos Cardíacos/patologia
15.
Cell Stem Cell ; 24(2): 318-327.e8, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554961

RESUMO

Human protein-coding genes are often accompanied by divergently transcribed non-coding RNAs whose functions, especially in cell fate decisions, are poorly understood. Using an hESC-based cardiac differentiation model, we define a class of divergent lncRNAs, termed yin yang lncRNAs (yylncRNAs), that mirror the cell-type-specific expression pattern of their protein-coding counterparts. yylncRNAs are preferentially encoded from the genomic loci of key developmental cell fate regulators. Most yylncRNAs are spliced polyadenylated transcripts showing comparable expression patterns in vivo in mouse and in human embryos. Signifying their developmental function, the key mesoderm specifier BRACHYURY (T) is accompanied by yylncT, which localizes to the active T locus during mesoderm commitment. yylncT binds the de novo DNA methyltransferase DNMT3B, and its transcript is required for activation of the T locus, with yylncT depletion specifically abolishing mesodermal commitment. Collectively, we report a lncRNA-mediated regulatory layer safeguarding embryonic cell fate transitions.


Assuntos
Linhagem da Célula/genética , Proteínas Fetais/metabolismo , Mesoderma/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , Proteínas com Domínio T/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Loci Gênicos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , DNA Metiltransferase 3B
16.
J Gen Physiol ; 130(2): 133-44, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17664344

RESUMO

Early (E9.5-E11.5) embryonic heart cells beat spontaneously, even though the adult pacemaking mechanisms are not yet fully established. Here we show that in isolated murine early embryonic cardiomyocytes periodic oscillations of cytosolic Ca(2+) occur and that these induce contractions. The Ca(2+) oscillations originate from the sarcoplasmic reticulum and are dependent on the IP(3) and the ryanodine receptor. The Ca(2+) oscillations activate the Na(+)-Ca(2+) exchanger, giving rise to subthreshold depolarizations of the membrane potential and/or action potentials. Although early embryonic heart cells are voltage-independent Ca(2+) oscillators, the generation of action potentials provides synchronization of the electrical and mechanical signals. Thus, Ca(2+) oscillations pace early embryonic heart cells and the ensuing activation of the Na(+)-Ca(2+) exchanger evokes small membrane depolarizations or action potentials.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Cálcio/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Eletrofisiologia , Coração/fisiologia , Canais Iônicos/fisiologia , Camundongos , Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Trocador de Sódio e Cálcio/fisiologia
17.
J Electrocardiol ; 41(6): 562-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18790503

RESUMO

BACKGROUND: Biological pacemakers could be an alternative or complement to electronic pacemakers. Embryonic stem cells (ESCs) can be differentiated in vitro to spontaneously active cells. Although numerous studies show that ESC-derived cardiomyocytes (ESC-CMs) and other cell types are capable to exert pacemaker function in vivo, detailed analyses of pattern and safety of conduction on a tissue level are rare. METHODS: Murine ESCs (mESCs) expressing enhanced green fluorescent protein and puromycin resistance under control of the promoter of alpha-myosin (heavy chain) were differentiated to cardiomyocytes (mESC-CMs) and purified by negative antibiotic selection. Ventricles of mouse embryonic hearts (embryonic day 16.5) were embedded in agarose and sliced along the short axis. Clusters of mESC-CMs and the murine, vital heart slices were cocultured on multielectrode arrays for 4 days. Field potentials and videos were recorded daily to investigate beating behavior and excitation spreading within the slice. RESULTS: On the first day of coculture, the mean beating rate of the tissue slices cocultured with mESC-CMs (n = 19) did not differ significantly from the beating rate of control slices (n = 19) (37 +/- 10 versus 19 +/- 7 bpm, P = .133). After 4 days of coculture, beating rates were significantly higher in cocultures than in control slices (154 +/- 22 versus 49 +/- 8 bpm, P < .001). On day 4, 1:1 coupling could be found in 1 of 19 preparations; 2:1, 3:1, or 4:1 coupling in another 4 of 19 preparations; 14 of 19 propagation patterns were irregular. CONCLUSION: In this in vitro model, the increase of the beating rate suggests that purified mESC-CMs can pace native heart tissue, albeit with low efficiency.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Camundongos , Camundongos Transgênicos
18.
Sheng Li Xue Bao ; 60(2): 181-8, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18425304

RESUMO

The aim of the present study was to investigate the influence of osmotic pressure on myocardial contractility and the possible mechanism. Electrical stimulation was used to excite papillary muscles of the left ventricle of Sprague-Dawley (SD) rats. The contractilities of myocardium in hyposmotic, isosmotic, and hyperosmotic perfusates were recorded. The influences of agonist and antagonist of the transient receptor potential vanilloid 4 (TRPV4) on the contractility of myocardium under hyposmotic, isosmotic and hyperosmotic conditions were observed. The results were as follows: (1) Compared with that under isosmotic condition (310 mOsm/L), the myocardial contractility was increased by 11.5%, 21.5% and 25.0% (P<0.05) under hyposmotic conditions when the osmotic pressure was at 290, 270 and 230 mOsm/L, respectively; and was decreased by 16.0%, 23.7% and 55.2% (P<0.05) under hyperosmotic conditions when the osmotic pressure was at 350, 370 and 390 mOsm/L, respectively. (2) When ruthenium red (RR), an antagonist of TRPV4, was added to the hyposmotic perfusate (270 mOsm/L), the positive inotropic effect of hyposmia was restrained by 36% (P<0.01); and when RR was added to the hyperosmotic perfusate (390 mOsm/L), the inhibitory effect of hyperosmia on myocardial contractility was increased by 56.1% (P<0.01). (3) When 4-α-phorbol-12,13-didecanoate (4α-PDD), an agonist of TRPV4, was added to the isosmotic perfusate (310 mOsm/L), the myocardial contractility did not change; and when 4α-PDD was added to the hyperosmotic perfusate (390 mOsm/L), the inhibition of myocardial contractility by hyperosmia was increased by 27.1% (P<0.01). These results obtained indicate that TRPV4 is possibly involved in the osmotic pressure-induced inotropic effect.


Assuntos
Coração/fisiologia , Contração Miocárdica/fisiologia , Pressão Osmótica , Canais de Cátion TRPV/fisiologia , Animais , Ésteres de Forbol/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Artigo em Inglês | MEDLINE | ID: mdl-18465442

RESUMO

Derivation of human embryonic stem (ES) cells from preimplantation embryos ten years ago raised great hopes that they may be an excellent source of cells for cell replacement therapy. However, serious ethical concerns and the risk of immune rejection of allotransplanted cells have hindered the translation of ES cell-based therapies into the clinic. In an attempt to circumvent these barriers, a number of methods have been developed for converting adult somatic cells into a pluripotent state from which ethically acceptable patient-specific mature cells of interest could be derived. These efforts, backed by advances in elucidating the molecular basis of pluripotency, have culminated in successful reprogramming of fibroblasts into ES cell-like cells, termed induced pluripotent stem (iPS) cells, by ectopic expression of only a handful of "stemness" factors. iPS cells possess morphological, molecular and developmental features of conventional blastocyst-derived ES cells and have the potential to serve as a source of therapeutic cells for customized tissue repair, gene therapy, drug discovery, toxicological testing and for studying the molecular basis of human disease. The goal of this review is to provide the current state-of-the-art in this very exciting and dynamic field and to discuss barriers that remain to be removed before the therapeutic potential of iPS cells can be fully realized.


Assuntos
Reprogramação Celular , Células-Tronco Embrionárias/transplante , Células-Tronco Pluripotentes/transplante , Células-Tronco Adultas/transplante , Animais , Terapia Genética/métodos , Humanos , Células-Tronco Pluripotentes/metabolismo
20.
ESC Heart Fail ; 5(6): 1176-1183, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230713

RESUMO

AIMS: Cardiac repair has steered clinical attention and remains an unmet need, because available regenerative therapies lack robust mechanistic evidence. Pressure-controlled intermittent coronary sinus occlusion (PICSO), known to induce angiogenetic and vasoactive molecules as well as to reduce regional ischemia, may activate endogenous regenerative processes in failing myocardium. We aimed to investigate the effects of PICSO in patients with advanced heart failure undergoing cardiac resynchronization therapy. METHODS AND RESULTS: Eight out of 32 patients were treated with PICSO, and the remainder served as controls. After electrode testing including left ventricular leads, PICSO was performed for 20 min. To test immediate molecular responses, in both patient groups, coronary venous blood samples were taken at baseline and after 20 min, the time required for the intervention. Sera were tested for microRNAs and growth factors. To test the ability of up-regulated soluble factors on cell proliferation and expression of transcription factors [e.g. Krüppel-like factor 4 (KLF-4)], sera were co-cultured with human cardiomyocytes and fibroblasts. As compared with controls, significant differential expression (differences between pre-values and post-values in relation to both patient cohorts) of microRNA patterns associated with cardiac development was observed with PICSO. Importantly, miR-143 (P < 0.048) and miR-145 (P < 0,047) increased, both targeting a network of transcription factors (including KLF-4) that promote differentiation and repress proliferation of vascular smooth muscle cells. Additionally, an increase of miR-19b (P < 0.019) known to alleviate endothelial cell apoptosis was found, whereas disadvantageous miR-320b (P < 0.023) suspect to impair expression of c-myc, normally provoking cell cycle re-entry in post-mitotic myocytes and miR-25 (P < 0.023), decreased, a target of anti-miR application to improve contractility in the failing heart. Co-cultured post-PICSO sera significantly increased cellular proliferation both in fibroblasts (P < 0.001) and adult cardiomycytes (P < 0.004) sampled from a transplant recipient as compared with controls. Adult cardiomyocytes showed a seven-fold increase of the transcription factor KLF-4 protein when co-cultured with treated sera as compared with controls. CONCLUSIONS: Here, we show for the first time that PICSO, a trans-coronary sinus catheter intervention, is associated with an increase in morphogens secreted into cardiac veins, normally present during cardiac development, and a significant induction of cell proliferation. Present findings support the notion that epigenetic modifications, that is, haemodynamic stimuli on venous vascular cells, may reverse myocardial deterioration. Further investigations are needed to decipher the maze of complex interacting molecular pathways in failing myocardium and the potential role of PICSO to reinitiate developmental processes to prevent further myocardial decay eventually reaching clinical significance.


Assuntos
Oclusão com Balão/métodos , Cateterismo Cardíaco/métodos , Circulação Coronária/fisiologia , Seio Coronário/fisiopatologia , Vasos Coronários/fisiopatologia , Insuficiência Cardíaca/terapia , Idoso , Biomarcadores/sangue , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Pessoa de Meia-Idade , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA