Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959868

RESUMO

We present a spectroscopic study of the magnetic properties of Fe3-δGeTe2 single crystals with varying Fe content, achieved by tuning the stoichiometry of the crystals. We carried out x-ray absorption spectroscopy and analyzed the x-ray circular magnetic dichroism spectra using the sum rules, to determine the orbital and spin magnetic moments of the materials. We find a clear reduction of the spin and orbital magnetic moment with increasing Fe deficiency. Magnetic susceptibility measurements show that the reduction in magnetization is accompanied by a reduced Curie temperature. Multiplet calculations reveal that the Fe2+ state increasingly mixes with a higher valence state when the Fe deficiency is increased. This effect is correlated with the weakening of the magnetic moment. As single crystals are the base material for exfoliation processes, our results are relevant for the assembly of 2D magnetic heterostructures. .

2.
Nano Lett ; 23(11): 5164-5170, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37263581

RESUMO

Topological defects are fundamental concepts in physics, but little is known about the transition between distinct types across different dimensionalities. In topological magnetism, as in field theory, the transition between 1D strings and 0D monopoles is a key process whose observation has remained elusive. Here, we introduce a novel mechanism that allows for the controlled stabilization of emergent monopoles and show that magnetic skyrmion strings can be folded into monopoles. Conversely, they act as seeds out of which the entire string structure can unfold, containing its complete information. In chiral magnets, this process can be observed by resonant elastic X-ray scattering when the objects are in proximity to a polarized ferromagnet, whereby a pure monopole lattice is emerging on the surface. Our experimental proof of the reversible evolution from monopole to string sheds new light on topological defects and establishes the emergent monopole lattice as a new 3D topological phase.

3.
Nanotechnology ; 34(27)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-36947871

RESUMO

The topological surface states (TSSs) in topological insulators (TIs) offer exciting prospects for dissipationless spin transport. Common spin-based devices, such as spin valves, rely on trilayer structures in which a non-magnetic layer is sandwiched between two ferromagnetic (FM) layers. The major disadvantage of using high-quality single-crystalline TI films in this context is that a single pair of spin-momentum locked channels spans across the entire film, meaning that only a very small spin current can be pumped from one FM to the other, along the side walls of the film. On the other hand, using nanocrystalline TI films, in which the grains are large enough to avoid hybridization of the TSSs, will effectively increase the number of spin channels available for spin pumping. Here, we used an element-selective, x-ray based ferromagnetic resonance technique to demonstrate spin pumping from a FM layer at resonance through the TI layer and into the FM spin sink.

4.
Nano Lett ; 22(9): 3737-3743, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451843

RESUMO

A major challenge in topological magnetism lies in the three-dimensional (3D) exploration of their magnetic textures. A recent focus has been the question of how 2D skyrmion sheets vertically stack to form distinct types of 3D topological strings. Being able to manipulate the vertical coupling should therefore provide a route to the engineering of topological states. Here, we present a new type of axially bound magnetic skyrmion string state in which the strings in two distinct materials are glued together across their interface. With quasi-tomographic resonant elastic X-ray scattering, the 3D skyrmion profiles before and after their binding across the interface were unambiguously determined and compared. Their attractive binding is accompanied by repulsive twisting; i.e., the coupled skyrmions mutually affect each other via a compensating twisting. This state exists in chiral magnet-magnetic thin film heterostructures, providing a new arena for the engineering of 3D topological phases.

5.
Nano Lett ; 21(21): 9210-9216, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699234

RESUMO

All-optical switching of magnetization has great potential for use in future ultrafast and energy efficient nanoscale magnetic storage devices. So far, research has been almost exclusively focused on rare-earth based materials, which limits device tunability and scalability. Here, we show that a perpendicularly magnetized synthetic ferrimagnet composed of two distinct transition metal ferromagnetic layers, Ni3Pt and Co, can exhibit helicity independent magnetization switching. Switching occurs between two equivalent remanent states with antiparallel alignment of the Ni3Pt and Co magnetic moments and is observable over a broad temperature range. Time-resolved measurements indicate that the switching is driven by a spin-polarized current passing through the subnanometer Ir interlayer. The magnetic properties of this model system may be tuned continuously via subnanoscale changes in the constituent layer thicknesses as well as growth conditions, allowing the underlying mechanisms to be elucidated and paving the way to a new class of data storage devices.

6.
Phys Rev Lett ; 126(1): 017204, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480795

RESUMO

A chiral bobber is a localized three-dimensional magnetization configuration, terminated by a singularity. Chiral bobbers coexist with magnetic skyrmions in chiral magnets, lending themselves to new types of skyrmion-complementary bits of information. However, the on-demand creation of bobbers, as well as their direct observation remained elusive. Here, we introduce a new mechanism for creating a stable chiral bobber lattice state via the proximity of two skyrmion species with comparable size. This effect is experimentally demonstrated in a Cu_{2}OSeO_{3}/[Ta/CoFeB/MgO]_{4} heterostructure in which an exotic bobber lattice state emerges in the phase diagram of Cu_{2}OSeO_{3}. To unambiguously reveal the existence of the chiral bobber lattice state, we have developed a novel characterization technique, magnetic truncation rod analysis, which is based on resonant elastic x-ray scattering.

7.
Phys Rev Lett ; 127(21): 217201, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860082

RESUMO

A three-dimensional singular point that consists of two oppositely aligned emergent monopoles is identified in continuous CoTb thin films, as confirmed by complementary techniques of resonant elastic x-ray scattering, Lorentz transmission electron microscopy, and scanning transmission x-ray microscopy. This new type of topological defect can be regarded as a superposition of an emergent magnetic monopole and an antimonopole, around which the source and drain of the magnetic flux overlap in space. We experimentally prove that the observed spin twist seen in Lorentz transmission electron microscopy reveals the cross section of the superimposed three-dimensional structure, providing a straightforward strategy for the observation of magnetic singularities. Such a quasiparticle provides an excellent platform for studying the rich physics of emergent electromagnetism.

8.
Proc Natl Acad Sci U S A ; 115(25): 6386-6391, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866823

RESUMO

It is commonly assumed that surfaces modify the properties of stable materials within the top few atomic layers of a bulk specimen only. Exploiting the polarization dependence of resonant elastic X-ray scattering to go beyond conventional diffraction and imaging techniques, we have determined the depth dependence of the full 3D spin structure of skyrmions-that is, topologically nontrivial whirls of the magnetization-below the surface of a bulk sample of Cu2OSeO3 We found that the skyrmions change exponentially from pure Néel- to pure Bloch-twisting over a distance of several hundred nanometers between the surface and the bulk, respectively. Though qualitatively consistent with theory, the strength of the Néel-twisting at the surface and the length scale of the variation observed experimentally exceed material-specific modeling substantially. In view of the exceptionally complete quantitative theoretical account of the magnetic rigidities and associated static and dynamic properties of skyrmions in Cu2OSeO3 and related materials, we conclude that subtle changes of the materials properties must exist at distances up to several hundred atomic layers into the bulk, which originate in the presence of the surface. This has far-reaching implications for the creation of skyrmions in surface-dominated systems and identifies, more generally, surface-induced gradual variations deep within a bulk material and their impact on tailored functionalities as an unchartered scientific territory.

9.
Nano Lett ; 20(7): 5315-5322, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32551677

RESUMO

Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures.

10.
Nano Lett ; 20(1): 345-352, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31855436

RESUMO

Collective spin excitations of ordered magnetic structures offer great potential for the development of novel spintronic devices. The present approach relies on micromagnetic models to explain the origins of dynamic modes observed by ferromagnetic resonance (FMR) studies, since experimental tools to directly reveal the origins of the complex dynamic behavior are lacking. Here we demonstrate a new approach which combines resonant magnetic X-ray diffraction with FMR, thereby allowing for a reconstruction of the real-space spin dynamics of the system. This new diffractive FMR technique builds on X-ray detected FMR that allows for element-selective dynamic studies, giving unique access to specific wave components of static and dynamic coupling in magnetic heterostructures. In combination with diffraction, FMR is elevated to the level of a modal spectroscopy technique, potentially opening new pathways for the development of spintronic devices.

11.
Nano Lett ; 20(2): 1428-1432, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31928021

RESUMO

Magnetic skyrmions are two-dimensional magnetization swirls that stack in the form of tubes in the third dimension and which are proposed as prospective information carriers for nonvolatile memory devices due to their unique topological properties. From resonant elastic X-ray scattering measurements on Cu2OSeO3 with an in-plane magnetic field, we find that a state of perpendicularly ordered skyrmions forms, in stark contrast to the well-studied bulk state. The surface state is stable over a wide temperature range, unlike the bulk state in out-of-plane fields which is confined to a narrow region of the temperature-field phase diagram. In contrast to ordinary skyrmions found in the bulk, the surface state skyrmions result from the presence of magnetic interactions unique to the surface which stabilize them against external perturbations. The surface guiding makes the robust state particular interesting for racetracklike devices, ultimately allowing for much higher storage densities due to the smaller lateral footprint of the perpendicular skyrmions.

12.
Nano Lett ; 20(3): 1731-1737, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32013439

RESUMO

Engineering the anomalous Hall effect (AHE) is the key to manipulate the magnetic orders in the emerging magnetic topological insulators (MTIs). In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic heterostructures and observe pronounced AHE signals from both layers combined together. The evolution of the resulting hybrid AHE intensity with the top Bi2Te3 layer thickness manifests the presence of an intrinsic ferromagnetic phase induced by the topological surface states at the heterolayer interface. More importantly, by doping the Bi2Te3 layer with Sb, we are able to manipulate the sign of the Berry phase-associated AHE component. Our results demonstrate the unparalleled advantages of MTI heterostructures over magnetically doped TI counterparts in which the tunability of the AHE response can be greatly enhanced. This in turn unveils a new avenue for MTI heterostructure-based multifunctional applications.

13.
Phys Rev Lett ; 125(2): 026802, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701330

RESUMO

At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an s-wave SC in a TI can develop an order parameter with a p-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi_{2}Se_{3} proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi_{2}Se_{3} that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.

14.
Phys Rev Lett ; 124(21): 217201, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530697

RESUMO

Insulating antiferromagnets have recently emerged as efficient and robust conductors of spin current. Element-specific and phase-resolved x-ray ferromagnetic resonance has been used to probe the injection and transmission of ac spin current through thin epitaxial NiO(001) layers. The spin current is found to be mediated by coherent evanescent spin waves of GHz frequency, rather than propagating magnons of THz frequency, paving the way towards coherent control of the phase and amplitude of spin currents within an antiferromagnetic insulator at room temperature.

15.
Nanotechnology ; 31(43): 434001, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32748803

RESUMO

We report the magneto-optical Kerr effect (MOKE) study of magnetic topological insulator superlattice films with alternating transition-metal and rare-earth doping. We observe an unexpected hump in the MOKE hysteresis loops upon magnetization reversal at low temperatures, reminiscent of the topological Hall effect (THE) reported in transport measurements. The THE is commonly associated with the existence of magnetic skyrmions, i.e. chiral spin textures originating from topological defects in real space. Here, the observation of the effect is tied to ferromagnetic ordering in the rare-earth-doped layers of the superlattice. Our study may provide a new approach for the non-invasive optical investigation of skyrmions in magnetic films, complementary to electrical transport measurements, where the topological Hall signal is often the only hint of non-trivial magnetization patterns.

16.
Nano Lett ; 18(2): 1057-1063, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29363315

RESUMO

The combination of topological insulators, that is, bulk insulators with gapless, topologically protected surface states, with magnetic order is a love-hate relationship that can unlock new quantum states and exotic physical phenomena, such as the quantum anomalous Hall effect and axion electrodynamics. Moreover, the unusual coupling between topological insulators and ferromagnets can also result in the formation of topological spin textures in the ferromagnetic layer. Skyrmions are topologically protected magnetization swirls that are promising candidates for spintronics memory carriers. Here, we report on the observation of skyrmionium in thin ferromagnetic films coupled to a magnetic topological insulator. The occurrence of skyrmionium, which appears as a soliton composed of two skyrmions with opposite winding numbers, is tied to the ferromagnetic state of the topological insulator. Our work presents a new combination of two important classes of topological materials and may open the door to new topologically inspired information-storage concepts in the future.

17.
Nano Lett ; 18(7): 4493-4499, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29912565

RESUMO

How the interacting electronic states and phases of layered transition-metal dichalcogenides evolve when thinned to the single-layer limit is a key open question in the study of two-dimensional materials. Here, we use angle-resolved photoemission to investigate the electronic structure of monolayer VSe2 grown on bilayer graphene/SiC. While the global electronic structure is similar to that of bulk VSe2, we show that, for the monolayer, pronounced energy gaps develop over the entire Fermi surface with decreasing temperature below Tc = 140 ± 5 K, concomitant with the emergence of charge-order superstructures evident in low-energy electron diffraction. These observations point to a charge-density wave instability in the monolayer that is strongly enhanced over that of the bulk. Moreover, our measurements of both the electronic structure and of X-ray magnetic circular dichroism reveal no signatures of a ferromagnetic ordering, in contrast to the results of a recent experimental study as well as expectations from density functional theory. Our study thus points to a delicate balance that can be realized between competing interacting states and phases in monolayer transition-metal dichalcogenides.

18.
Chemistry ; 22(39): 13823-13825, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27531822

RESUMO

A comparison between Au, TiO2 and self-catalysed growth of SnO2 nanostructures using chemical vapour deposition is reported. TiO2 enables growth of a nanonetwork of SnO2 , whereas self-catalysed growth results in nanoclusters. Using Au catalyst, single-crystalline SnO2 nanowire trees can be grown in a one-step process. Two types of trees are identified that differ in size, presence of a catalytic tip, and degree of branching. The growth mechanism of these nanotrees is based on branch-splitting and self-seeding by the catalytic tip, facilitating at least three levels of branching, namely trunk, branch and leaf.

19.
Nat Commun ; 15(1): 4860, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849412

RESUMO

Magnetic skyrmions are topologically protected magnetization vortices that form three-dimensional strings in chiral magnets. With the manipulation of skyrmions being key to their application in devices, the focus has been on their dynamics within the vortex plane, while the dynamical control of skyrmion strings remained uncharted territory. Here, we report the effective bending of three-dimensional skyrmion strings in the chiral magnet MnSi in orthogonal thermal gradients using small angle neutron scattering. This dynamical behavior is achieved by exploiting the temperature-dependent skyrmion Hall effect, which is unexpected in the framework of skyrmion dynamics. We thus provide experimental evidence for the existence of magnon friction, which was recently proposed to be a key ingredient for capturing skyrmion dynamics, requiring a modification of Thiele's equation. Our work therefore suggests the existence of an extra degree of freedom for the manipulation of three-dimensional skyrmions.

20.
Adv Mater ; 35(27): e2102427, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34665482

RESUMO

Topological insulators (TIs) provide intriguing prospects for the future of spintronics due to their large spin-orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. The combination of topological properties and magnetic order can lead to new quantum states including the quantum anomalous Hall effect that was first experimentally realized in Cr-doped (Bi,Sb)2 Te3 films. Since magnetic doping can introduce detrimental effects, requiring very low operational temperatures, alternative approaches are explored. Proximity coupling to magnetically ordered systems is an obvious option, with the prospect to raise the temperature for observing the various quantum effects. Here, an overview of proximity coupling and interfacial effects in TI heterostructures is presented, which provides a versatile materials platform for tuning the magnetic and topological properties of these exciting materials. An introduction is first given to the heterostructure growth by molecular beam epitaxy and suitable structural, electronic, and magnetic characterization techniques. Going beyond transition-metal-doped and undoped TI heterostructures, examples of heterostructures are discussed, including rare-earth-doped TIs, magnetic insulators, and antiferromagnets, which lead to exotic phenomena such as skyrmions and exchange bias. Finally, an outlook on novel heterostructures such as intrinsic magnetic TIs and systems including 2D materials is given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA