Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiother Oncol ; 164: 202-208, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592361

RESUMO

PURPOSE/OBJECTIVE: Most dose-escalation trials in glioblastoma patients integrate the escalated dose throughout the standard course by targeting a specific subvolume. We hypothesize that anatomical changes during irradiation may affect the dose coverage of this subvolume for both proton- and photon-based radiotherapy. MATERIAL AND METHODS: For 24 glioblastoma patients a photon- and proton-based dose escalation treatment plan (of 75 Gy/30 fr) was simulated on the dedicated radiotherapy planning MRI obtained before treatment. The escalated dose was planned to cover the resection cavity and/or contrast enhancing lesion on the T1w post-gadolinium MRI sequence. To analyze the effect of anatomical changes during treatment, we evaluated on an additional MRI that was obtained during treatment the changes of the dose distribution on this specific high dose region. RESULTS: The median time between the planning MRI and additional MRI was 26 days (range 16-37 days). The median time between the planning MRI and start of radiotherapy was relatively short (7 days, range 3-11 days). In 3 patients (12.5%) changes were observed which resulted in a substantial deterioration of both the photon and proton treatment plans. All these patients underwent a subtotal resection, and a decrease in dose coverage of more than 5% and 10% was observed for the photon- and proton-based treatment plans, respectively. CONCLUSION: Our study showed that only for a limited number of patients anatomical changes during photon or proton based radiotherapy resulted in a potentially clinically relevant underdosage in the subvolume. Therefore, volume changes during treatment are unlikely to be responsible for the negative outcome of dose-escalation studies.


Assuntos
Glioblastoma , Terapia com Prótons , Radioterapia de Intensidade Modulada , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Humanos , Fótons , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Clin Transl Radiat Oncol ; 2: 23-28, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29657996

RESUMO

INTRODUCTION: Linac-based stereotactic radiosurgery (SRS) for brain metastases may be influenced by the time interval between treatment preparation and delivery, related to risk of anatomical changes. We studied tumor position shifts and its relations to peritumoral volume edema changes over time, as seen on MRI. METHODS: Twenty-six patients who underwent SRS for brain metastases in our institution were included. We evaluated the occurrence of a tumor shift between the diagnostic MRI and radiotherapy planning MRI. For 42 brain metastases the tumor and peritumoral edema were delineated on the contrast enhanced T1weighted and FLAIR images of both the diagnostic MRI and planning MRI examinations. Centre of Mass (CoM) shifts and tumor borders were evaluated. We evaluated the influence of steroids on peritumoral edema and tumor volume and the correlation with CoM and tumor border changes. RESULTS: The median values of the CoM shifts and of the maximum distances between the tumor borders obtained from the diagnostic MRI and radiotherapy planning MRI were 1.3 mm (maximum shift of 5.0 mm) and 1.9 mm (maximum distance of 7.4 mm), respectively. We found significant correlations between the absolute change in edema volume and the tumor shift of the CoM (p < 0.001) and tumor border (p = 0.040). Patients who received steroids did not only had a decrease in peritumoral edema, but also had a median decrease in tumor volume of 0.02 cc while patients who did not receive steroids had a median increase of 0.06 cc in tumor volume (p = 0.035). CONCLUSION: Our results show that large tumor shifts of brain metastases can occur over time. Because shifts may have a significant impact on the local dose coverage, we recommend minimizing the time between treatment preparation and delivery for Linac based SRS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA