Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hum Mol Genet ; 29(5): 745-755, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32025735

RESUMO

Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g. glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway (e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth metabolomic signature covering previously identified associations and new associations, which enables drug developers to peripherally assess the effect of drugs on the metabolic status of dystrophic mice.


Assuntos
Modelos Animais de Doenças , Metaboloma , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/patologia , Animais , Estudos Transversais , Progressão da Doença , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos mdx
2.
Brief Bioinform ; 21(4): 1302-1312, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31297505

RESUMO

Studying sets of genomic features is increasingly popular in genomics, proteomics and metabolomics since analyzing at set level not only creates a natural connection to biological knowledge but also offers more statistical power. Currently, there are two gene-set testing approaches, self-contained and competitive, both of which have their advantages and disadvantages, but neither offers the final solution. We introduce simultaneous enrichment analysis (SEA), a new approach for analysis of feature sets in genomics and other omics based on a new unified null hypothesis, which includes the self-contained and competitive null hypotheses as special cases. We employ closed testing using Simes tests to test this new hypothesis. For every feature set, the proportion of active features is estimated, and a confidence bound is provided. Also, for every unified null hypotheses, a $P$-value is calculated, which is adjusted for family-wise error rate. SEA does not need to assume that the features are independent. Moreover, users are allowed to choose the feature set(s) of interest after observing the data. We develop a novel pipeline and apply it on RNA-seq data of dystrophin-deficient mdx mice, showcasing the flexibility of the method. Finally, the power properties of the method are evaluated through simulation studies.


Assuntos
Genômica/métodos , Animais , Intervalos de Confiança , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Modelos Estatísticos
3.
BMC Med Inform Decis Mak ; 20(1): 97, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460734

RESUMO

BACKGROUND: Patient experience surveys often include free-text responses. Analysis of these responses is time-consuming and often underutilized. This study examined whether Natural Language Processing (NLP) techniques could provide a data-driven, hospital-independent solution to indicate points for quality improvement. METHODS: This retrospective study used routinely collected patient experience data from two hospitals. A data-driven NLP approach was used. Free-text responses were categorized into topics, subtopics (i.e. n-grams) and labelled with a sentiment score. The indicator 'impact', combining sentiment and frequency, was calculated to reveal topics to improve, monitor or celebrate. The topic modelling architecture was tested on data from a second hospital to examine whether the architecture is transferable to another hospital. RESULTS: A total of 38,664 survey responses from the first hospital resulted in 127 topics and 294 n-grams. The indicator 'impact' revealed n-grams to celebrate (15.3%), improve (8.8%), and monitor (16.7%). For hospital 2, a similar percentage of free-text responses could be labelled with a topic and n-grams. Between-hospitals, most topics (69.7%) were similar, but 32.2% of topics for hospital 1 and 29.0% of topics for hospital 2 were unique. CONCLUSIONS: In both hospitals, NLP techniques could be used to categorize patient experience free-text responses into topics, sentiment labels and to define priorities for improvement. The model's architecture was shown to be hospital-specific as it was able to discover new topics for the second hospital. These methods should be considered for future patient experience analyses to make better use of this valuable source of information.


Assuntos
Processamento de Linguagem Natural , Avaliação de Resultados da Assistência ao Paciente , Envio de Mensagens de Texto , Hospitais , Humanos , Idioma , Melhoria de Qualidade , Estudos Retrospectivos
4.
J Cell Mol Med ; 22(4): 2442-2448, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29441734

RESUMO

Muscular dystrophies are characterized by a progressive loss of muscle tissue and/or muscle function. While metabolic alterations have been described in patients'-derived muscle biopsies, non-invasive readouts able to describe these alterations are needed in order to objectively monitor muscle condition and response to treatment targeting metabolic abnormalities. We used a metabolomic approach to study metabolites concentration in serum of patients affected by multiple forms of muscular dystrophy such as Duchenne and Becker muscular dystrophies, limb-girdle muscular dystrophies type 2A and 2B, myotonic dystrophy type 1 and facioscapulohumeral muscular dystrophy. We show that 15 metabolites involved in energy production, amino acid metabolism, testosterone metabolism and response to treatment with glucocorticoids were differentially expressed between healthy controls and Duchenne patients. Five metabolites were also able to discriminate other forms of muscular dystrophy. In particular, creatinine and the creatine/creatinine ratio were significantly associated with Duchenne patients performance as assessed by the 6-minute walk test and north star ambulatory assessment. The obtained results provide evidence that metabolomics analysis of serum samples can provide useful information regarding muscle condition and response to treatment, such as to glucocorticoids treatment.


Assuntos
Metabolômica , Músculos/metabolismo , Distrofias Musculares/sangue , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Distrofias Musculares/classificação , Distrofias Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/sangue , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular Facioescapuloumeral/sangue , Distrofia Muscular Facioescapuloumeral/patologia , Distrofia Miotônica/sangue , Distrofia Miotônica/patologia , Adulto Jovem
5.
BMC Genomics ; 14: 865, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24320595

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. RESULTS: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. CONCLUSIONS: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Processamento Eletrônico de Dados , Redes e Vias Metabólicas/genética , Metaboloma , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Polimorfismo de Nucleotídeo Único , Software , Fluxo de Trabalho
6.
Brief Bioinform ; 12(5): 518-29, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21183478

RESUMO

Most methods for the interpretation of gene expression profiling experiments rely on the categorization of genes, as provided by the Gene Ontology (GO) and pathway databases. Due to the manual curation process, such databases are never up-to-date and tend to be limited in focus and coverage. Automated literature mining tools provide an attractive, alternative approach. We review how they can be employed for the interpretation of gene expression profiling experiments. We illustrate that their comprehensive scope aids the interpretation of data from domains poorly covered by GO or alternative databases, and allows for the linking of gene expression with diseases, drugs, tissues and other types of concepts. A framework for proper statistical evaluation of the associations between gene expression values and literature concepts was lacking and is now implemented in a weighted extension of global test. The weights are the literature association scores and reflect the importance of a gene for the concept of interest. In a direct comparison with classical GO-based gene sets, we show that use of literature-based associations results in the identification of much more specific GO categories. We demonstrate the possibilities for linking of gene expression data to patient survival in breast cancer and the action and metabolism of drugs. Coupling with online literature mining tools ensures transparency and allows further study of the identified associations. Literature mining tools are therefore powerful additions to the toolbox for the interpretation of high-throughput genomics data.


Assuntos
Mineração de Dados/métodos , Bases de Dados Factuais , Expressão Gênica , Genômica/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos
7.
Mol Neurobiol ; 59(4): 2532-2551, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091961

RESUMO

While the genetic cause of Huntington disease (HD) is known since 1993, still no cure exists. Therapeutic development would benefit from a method to monitor disease progression and treatment efficacy, ideally using blood biomarkers. Previously, HD-specific signatures were identified in human blood representing signatures in human brain, showing biomarker potential. Since drug candidates are generally first screened in rodent models, we aimed to identify HD signatures in blood and brain of YAC128 HD mice and compare these with previously identified human signatures. RNA sequencing was performed on blood withdrawn at two time points and four brain regions from YAC128 and control mice. Weighted gene co-expression network analysis was used to identify clusters of co-expressed genes (modules) associated with the HD genotype. These HD-associated modules were annotated via text-mining to determine the biological processes they represented. Subsequently, the processes from mouse blood were compared with mouse brain, showing substantial overlap, including protein modification, cell cycle, RNA splicing, nuclear transport, and vesicle-mediated transport. Moreover, the disease-associated processes shared between mouse blood and brain were highly comparable to those previously identified in human blood and brain. In addition, we identified HD blood-specific pathology, confirming previous findings for peripheral pathology in blood. Finally, we identified hub genes for HD-associated blood modules and proposed a strategy for gene selection for development of a disease progression monitoring panel.


Assuntos
Fenômenos Biológicos , Doença de Huntington , Animais , Encéfalo/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Progressão da Doença , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Transcriptoma/genética
8.
EMBO Mol Med ; 13(4): e13328, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33751844

RESUMO

DMD is a rare disorder characterized by progressive muscle degeneration and premature death. Therapy development is delayed by difficulties to monitor efficacy non-invasively in clinical trials. In this study, we used RNA-sequencing to describe the pathophysiological changes in skeletal muscle of 3 dystrophic mouse models. We show how dystrophic changes in muscle are reflected in blood by analyzing paired muscle and blood samples. Analysis of repeated blood measurements followed the dystrophic signature at five equally spaced time points over a period of seven months. Treatment with two antisense drugs harboring different levels of dystrophin recovery identified genes associated with safety and efficacy. Evaluation of the blood gene expression in a cohort of DMD patients enabled the comparison between preclinical models and patients, and the identification of genes associated with physical performance, treatment with corticosteroids and body measures. The presented results provide evidence that blood RNA-sequencing can serve as a tool to evaluate disease progression in dystrophic mice and patients, as well as to monitor response to (dystrophin-restoring) therapies in preclinical drug development and in clinical trials.


Assuntos
Distrofia Muscular de Duchenne , Animais , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Transcriptoma
9.
Bioinformatics ; 25(22): 2983-91, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19759196

RESUMO

MOTIVATION: From the scientific community, a lot of effort has been spent on the correct identification of gene and protein names in text, while less effort has been spent on the correct identification of chemical names. Dictionary-based term identification has the power to recognize the diverse representation of chemical information in the literature and map the chemicals to their database identifiers. RESULTS: We developed a dictionary for the identification of small molecules and drugs in text, combining information from UMLS, MeSH, ChEBI, DrugBank, KEGG, HMDB and ChemIDplus. Rule-based term filtering, manual check of highly frequent terms and disambiguation rules were applied. We tested the combined dictionary and the dictionaries derived from the individual resources on an annotated corpus, and conclude the following: (i) each of the different processing steps increase precision with a minor loss of recall; (ii) the overall performance of the combined dictionary is acceptable (precision 0.67, recall 0.40 (0.80 for trivial names); (iii) the combined dictionary performed better than the dictionary in the chemical recognizer OSCAR3; (iv) the performance of a dictionary based on ChemIDplus alone is comparable to the performance of the combined dictionary. AVAILABILITY: The combined dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web site http://www.biosemantics.org/chemlist.


Assuntos
Biologia Computacional/métodos , Dicionários Químicos como Assunto , Armazenamento e Recuperação da Informação/métodos , Indexação e Redação de Resumos/métodos , Dicionários como Assunto , Processamento de Linguagem Natural , Preparações Farmacêuticas/química , Software , Unified Medical Language System
10.
EBioMedicine ; 51: 102585, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31879244

RESUMO

BACKGROUND: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common causes of end-stage renal failure, caused by mutations in PKD1 or PKD2 genes. Tolvaptan, the only drug approved for ADPKD treatment, results in serious side-effects, warranting the need for novel drugs. METHODS: In this study, we applied RNA-sequencing of Pkd1cko mice at different disease stages, and with/without drug treatment to identify genes involved in ADPKD progression that were further used to identify novel drug candidates for ADPKD. We followed an integrative computational approach using a combination of gene expression profiling, bioinformatics and cheminformatics data. FINDINGS: We identified 1162 genes that had a normalized expression after treating the mice with drugs proven effective in preclinical models. Intersecting these genes with target affinity profiles for clinically-approved drugs in ChEMBL, resulted in the identification of 116 drugs targeting 29 proteins, of which several are previously linked to Polycystic Kidney Disease such as Rosiglitazone. Further testing the efficacy of six candidate drugs for inhibition of cyst swelling using a human 3D-cyst assay, revealed that three of the six had cyst-growth reducing effects with limited toxicity. INTERPRETATION: Our data further establishes drug repurposing as a robust drug discovery method, with three promising drug candidates identified for ADPKD treatment (Meclofenamic Acid, Gamolenic Acid and Birinapant). Our strategy that combines multiple-omics data, can be extended for ADPKD and other diseases in the future. FUNDING: European Union's Seventh Framework Program, Dutch Technology Foundation Stichting Technische Wetenschappen and the Dutch Kidney Foundation.


Assuntos
Perfilação da Expressão Gênica , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Animais , Progressão da Doença , Regulação da Expressão Gênica , Rim/metabolismo , Rim/patologia , Camundongos , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
11.
Sci Rep ; 9(1): 6281, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000794

RESUMO

Compounds that are candidates for drug repurposing can be ranked by leveraging knowledge available in the biomedical literature and databases. This knowledge, spread across a variety of sources, can be integrated within a knowledge graph, which thereby comprehensively describes known relationships between biomedical concepts, such as drugs, diseases, genes, etc. Our work uses the semantic information between drug and disease concepts as features, which are extracted from an existing knowledge graph that integrates 200 different biological knowledge sources. RepoDB, a standard drug repurposing database which describes drug-disease combinations that were approved or that failed in clinical trials, is used to train a random forest classifier. The 10-times repeated 10-fold cross-validation performance of the classifier achieves a mean area under the receiver operating characteristic curve (AUC) of 92.2%. We apply the classifier to prioritize 21 preclinical drug repurposing candidates that have been suggested for Autosomal Dominant Polycystic Kidney Disease (ADPKD). Mozavaptan, a vasopressin V2 receptor antagonist is predicted to be the drug most likely to be approved after a clinical trial, and belongs to the same drug class as tolvaptan, the only treatment for ADPKD that is currently approved. We conclude that semantic properties of concepts in a knowledge graph can be exploited to prioritize drug repurposing candidates for testing in clinical trials.


Assuntos
Reposicionamento de Medicamentos/métodos , Disseminação de Informação/métodos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Semântica , Benzazepinas/uso terapêutico , Ensaios Clínicos como Assunto , Bases de Dados Factuais , Humanos , Conhecimento , Reconhecimento Automatizado de Padrão
12.
J Am Med Inform Assoc ; 15(2): 246-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18096914

RESUMO

OBJECTIVE: The European INFOBIOMED Network of Excellence recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. DESIGN: A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a 'brokerage service' which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. MEASUREMENTS: This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. RESULTS: The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. CONCLUSION: The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians.


Assuntos
Informática Médica/educação , Comportamento do Consumidor , Coleta de Dados , União Europeia , Comunicação Interdisciplinar , Informática Médica/economia , Avaliação de Programas e Projetos de Saúde
13.
Mol Neurodegener ; 13(1): 31, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929540

RESUMO

BACKGROUND: Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of transgenic SCA3 mouse models may provide useful insights. METHODS: Here we characterised the MJD84.2 SCA3 mouse model expressing the mutant human ataxin-3 gene using a multi-omics approach on brain and blood. Gene expression changes in brainstem, cerebellum, striatum and cortex were used to study pathological changes in brain, while blood gene expression and metabolites/lipids levels were examined as potential biomarkers for disease. RESULTS: Despite normal motor performance at 17.5 months of age, transcriptional changes in brain tissue of the SCA3 mice were observed. Most transcriptional changes occurred in brainstem and striatum, whilst cerebellum and cortex were only modestly affected. The most significantly altered genes in SCA3 mouse brain were Tmc3, Zfp488, Car2, and Chdh. Based on the transcriptional changes, α-adrenergic and CREB pathways were most consistently altered for combined analysis of the four brain regions. When examining individual brain regions, axon guidance and synaptic transmission pathways were most strongly altered in striatum, whilst brainstem presented with strongest alterations in the pi-3 k cascade and cholesterol biosynthesis pathways. Similar to other neurodegenerative diseases, reduced levels of tryptophan and increased levels of ceramides, di- and triglycerides were observed in SCA3 mouse blood. CONCLUSIONS: The observed transcriptional changes in SCA3 mouse brain reveal parallels with previous reported neuropathology in patients, but also shows brain region specific effects as well as involvement of adrenergic signalling and CREB pathway changes in SCA3. Importantly, the transcriptional changes occur prior to onset of motor- and coordination deficits.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Animais , Ataxina-3/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcriptoma
14.
J Cachexia Sarcopenia Muscle ; 9(4): 715-726, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29682908

RESUMO

BACKGROUND: Analysis of muscle biopsies allowed to characterize the pathophysiological changes of Duchenne and Becker muscular dystrophies (D/BMD) leading to the clinical phenotype. Muscle tissue is often investigated during interventional dose finding studies to show in situ proof of concept and pharmacodynamics effect of the tested drug. Less invasive readouts are needed to objectively monitor patients' health status, muscle quality, and response to treatment. The identification of serum biomarkers correlating with clinical function and able to anticipate functional scales is particularly needed for personalized patient management and to support drug development programs. METHODS: A large-scale proteomic approach was used to identify serum biomarkers describing pathophysiological changes (e.g. loss of muscle mass), association with clinical function, prediction of disease milestones, association with in vivo 31 P magnetic resonance spectroscopy data and dystrophin levels in muscles. Cross-sectional comparisons were performed to compare DMD patients, BMD patients, and healthy controls. A group of DMD patients was followed up for a median of 4.4 years to allow monitoring of individual disease trajectories based on yearly visits. RESULTS: Cross-sectional comparison enabled to identify 10 proteins discriminating between healthy controls, DMD and BMD patients. Several proteins (285) were able to separate DMD from healthy, while 121 proteins differentiated between BMD and DMD; only 13 proteins separated BMD and healthy individuals. The concentration of specific proteins in serum was significantly associated with patients' performance (e.g. BMP6 serum levels and elbow flexion) or dystrophin levels (e.g. TIMP2) in BMD patients. Analysis of longitudinal trajectories allowed to identify 427 proteins affected over time indicating loss of muscle mass, replacement of muscle by adipose tissue, and cardiac involvement. Over-representation analysis of longitudinal data allowed to highlight proteins that could be used as pharmacodynamic biomarkers for drugs currently in clinical development. CONCLUSIONS: Serum proteomic analysis allowed to not only discriminate among DMD, BMD, and healthy subjects, but it enabled to detect significant associations with clinical function, dystrophin levels, and disease progression.


Assuntos
Distrofia Muscular de Duchenne/diagnóstico , Adulto , Idoso , Biomarcadores , Biologia Computacional/métodos , Estudos Transversais , Progressão da Doença , Seguimentos , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Proteoma , Proteômica/métodos , Adulto Jovem
15.
Endocrinology ; 159(12): 3925-3936, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321321

RESUMO

Medication for nonalcoholic fatty liver disease (NAFLD) is an unmet need. Glucocorticoid (GC) stress hormones drive fat metabolism in the liver, but both full blockade and full stimulation of GC signaling aggravate NAFLD pathology. We investigated the efficacy of selective glucocorticoid receptor (GR) modulator CORT118335, which recapitulates only a subset of GC actions, in reducing liver lipid accumulation in mice. Male C57BL/6J mice received a low-fat diet or high-fat diet mixed with vehicle or CORT118335. Livers were analyzed histologically and for genome-wide mRNA expression. Functionally, hepatic long-chain fatty acid (LCFA) composition was determined by gas chromatography. We determined very-low-density lipoprotein (VLDL) production by treatment with a lipoprotein lipase inhibitor after which blood was collected to isolate radiolabeled VLDL particles and apoB proteins. CORT118335 strongly prevented and reversed hepatic lipid accumulation. Liver transcriptome analysis showed increased expression of GR target genes involved in VLDL production. Accordingly, CORT118335 led to increased lipidation of VLDL particles, mimicking physiological GC action. Independent pathway analysis revealed that CORT118335 lacked induction of GC-responsive genes involved in cholesterol synthesis and LCFA uptake, which was indeed reflected in unaltered hepatic LCFA uptake in vivo. Our data thus reveal that the robust hepatic lipid-lowering effect of CORT118335 is due to a unique combination of GR-dependent stimulation of lipid (VLDL) efflux from the liver, with a lack of stimulation of GR-dependent hepatic fatty acid uptake. Our findings firmly demonstrate the potential use of CORT118335 in the treatment of NAFLD and underscore the potential of selective GR modulation in metabolic disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores de Glucocorticoides/antagonistas & inibidores , Timina/análogos & derivados , Hormônio Adrenocorticotrópico/sangue , Animais , Corticosterona/sangue , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Lipogênese/efeitos dos fármacos , Lipoproteínas VLDL/sangue , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Especificidade por Substrato , Timina/farmacologia , Timina/uso terapêutico
16.
Front Aging Neurosci ; 10: 102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706885

RESUMO

Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) is an early onset hereditary form of cerebral amyloid angiopathy (CAA) caused by a point mutation resulting in an amino acid change (NP_000475.1:p.Glu693Gln) in the amyloid precursor protein (APP). Post-mortem frontal and occipital cortical brain tissue from nine patients and nine age-related controls was used for RNA sequencing to identify biological pathways affected in HCHWA-D. Although previous studies indicated that pathology is more severe in the occipital lobe in HCHWA-D compared to the frontal lobe, the current study showed similar changes in gene expression in frontal and occipital cortex and the two brain regions were pooled for further analysis. Significantly altered pathways were analyzed using gene set enrichment analysis (GSEA) on 2036 significantly differentially expressed genes. Main pathways over-represented by down-regulated genes were related to cellular aerobic respiration (including ATP synthesis and carbon metabolism) indicating a mitochondrial dysfunction. Principal up-regulated pathways were extracellular matrix (ECM)-receptor interaction and ECM proteoglycans in relation with an increase in the transforming growth factor beta (TGFß) signaling pathway. Comparison with the publicly available dataset from pre-symptomatic APP-E693Q transgenic mice identified overlap for the ECM-receptor interaction pathway, indicating that ECM modification is an early disease specific pathomechanism.

17.
Genome Biol ; 18(1): 221, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141654

RESUMO

Open Science is encouraged by the European Union and many other political and scientific institutions. However, scientific practice is proving slow to change. We propose, as early career researchers, that it is our task to change scientific research into open scientific research and commit to Open Science principles.


Assuntos
Bases de Dados como Assunto , Pesquisadores , Ciência
18.
Artigo em Inglês | MEDLINE | ID: mdl-27141091

RESUMO

We describe the development of a chemical entity recognition system and its application in the CHEMDNER-patent track of BioCreative 2015. This community challenge includes a Chemical Entity Mention in Patents (CEMP) recognition task and a Chemical Passage Detection (CPD) classification task. We addressed both tasks by an ensemble system that combines a dictionary-based approach with a statistical one. For this purpose the performance of several lexical resources was assessed using Peregrine, our open-source indexing engine. We combined our dictionary-based results on the patent corpus with the results of tmChem, a chemical recognizer using a conditional random field classifier. To improve the performance of tmChem, we utilized three additional features, viz. part-of-speech tags, lemmas and word-vector clusters. When evaluated on the training data, our final system obtained an F-score of 85.21% for the CEMP task, and an accuracy of 91.53% for the CPD task. On the test set, the best system ranked sixth among 21 teams for CEMP with an F-score of 86.82%, and second among nine teams for CPD with an accuracy of 94.23%. The differences in performance between the best ensemble system and the statistical system separately were small.Database URL: http://biosemantics.org/chemdner-patents.


Assuntos
Mineração de Dados/métodos , Bases de Dados de Compostos Químicos , Aprendizado de Máquina , Patentes como Assunto , Modelos Estatísticos , Software
19.
Orphanet J Rare Dis ; 11(1): 97, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476530

RESUMO

BACKGROUND: Huntington's disease (HD) is a devastating brain disorder with no effective treatment or cure available. The scarcity of brain tissue makes it hard to study changes in the brain and impossible to perform longitudinal studies. However, peripheral pathology in HD suggests that it is possible to study the disease using peripheral tissue as a monitoring tool for disease progression and/or efficacy of novel therapies. In this study, we investigated if blood can be used to monitor disease severity and progression in brain. Since previous attempts using only gene expression proved unsuccessful, we compared blood and brain Huntington's disease signatures in a functional context. METHODS: Microarray HD gene expression profiles from three brain regions were compared to the transcriptome of HD blood generated by next generation sequencing. The comparison was performed with a combination of weighted gene co-expression network analysis and literature based functional analysis (Concept Profile Analysis). Uniquely, our comparison of blood and brain datasets was not based on (the very limited) gene overlap but on the similarity between the gene annotations in four different semantic categories: "biological process", "cellular component", "molecular function" and "disease or syndrome". RESULTS: We identified signatures in HD blood reflecting a broad pathophysiological spectrum, including alterations in the immune response, sphingolipid biosynthetic processes, lipid transport, cell signaling, protein modification, spliceosome, RNA splicing, vesicle transport, cell signaling and synaptic transmission. Part of this spectrum was reminiscent of the brain pathology. The HD signatures in caudate nucleus and BA4 exhibited the highest similarity with blood, irrespective of the category of semantic annotations used. BA9 exhibited an intermediate similarity, while cerebellum had the least similarity. We present two signatures that were shared between blood and brain: immune response and spinocerebellar ataxias. CONCLUSIONS: Our results demonstrate that HD blood exhibits dysregulation that is similar to brain at a functional level, but not necessarily at the level of individual genes. We report two common signatures that can be used to monitor the pathology in brain of HD patients in a non-invasive manner. Our results are an exemplar of how signals in blood data can be used to represent brain disorders. Our methodology can be used to study disease specific signatures in diseases where heterogeneous tissues are involved in the pathology.


Assuntos
Encéfalo/metabolismo , Doença de Huntington/sangue , Doença de Huntington/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/patologia , Progressão da Doença , Expressão Gênica/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/genética
20.
Metabolomics ; 12: 137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524956

RESUMO

INTRODUCTION: Metabolic changes have been frequently associated with Huntington's disease (HD). At the same time peripheral blood represents a minimally invasive sampling avenue with little distress to Huntington's disease patients especially when brain or other tissue samples are difficult to collect. OBJECTIVES: We investigated the levels of 163 metabolites in HD patient and control serum samples in order to identify disease related changes. Additionally, we integrated the metabolomics data with our previously published next generation sequencing-based gene expression data from the same patients in order to interconnect the metabolomics changes with transcriptional alterations. METHODS: This analysis was performed using targeted metabolomics and flow injection electrospray ionization tandem mass spectrometry in 133 serum samples from 97 Huntington's disease patients (29 pre-symptomatic and 68 symptomatic) and 36 controls. RESULTS: By comparing HD mutation carriers with controls we identified 3 metabolites significantly changed in HD (serine and threonine and one phosphatidylcholine-PC ae C36:0) and an additional 8 phosphatidylcholines (PC aa C38:6, PC aa C36:0, PC ae C38:0, PC aa C38:0, PC ae C38:6, PC ae C42:0, PC aa C36:5 and PC ae C36:0) that exhibited a significant association with disease severity. Using workflow based exploitation of pathway databases and by integrating our metabolomics data with our gene expression data from the same patients we identified 4 deregulated phosphatidylcholine metabolism related genes (ALDH1B1, MBOAT1, MTRR and PLB1) that showed significant association with the changes in metabolite concentrations. CONCLUSION: Our results support the notion that phosphatidylcholine metabolism is deregulated in HD blood and that these metabolite alterations are associated with specific gene expression changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA