Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 221(Pt 3)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29361601

RESUMO

Underpinning the formation of a social group is the motivation of individuals to aggregate and interact with conspecifics, termed sociability. Here, we developed an assay, inspired by vertebrate approaches to evaluate social behaviours, to simultaneously examine the development of honey bee (Apis mellifera) sociability and nestmate affiliation. Focal bees were placed in a testing chamber which was separated from groups of nestmates and conspecific non-nestmates by single-layer mesh screens. Assessing how much time bees spent contacting the two mesh screens allowed us to quantify simultaneously how much bees sought proximity and interaction with other bees and their preference for nestmates over non-nestmates. Both sociability and nestmate affiliation could be detected soon after emergence as an adult. Isolation early in adult life impaired honey bee sociability but there was no evidence for a critical period for the development of the trait, as isolated bees exposed to their hive for 24 h when as old as 6 days still recovered high levels of sociability. Our data show that, even for advanced social insects, sociability is a developmental phenomenon and experience dependent.


Assuntos
Abelhas/fisiologia , Animais , Abelhas/crescimento & desenvolvimento , Comportamento Social , Meio Social
2.
BMC Vet Res ; 10: 167, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25080935

RESUMO

BACKGROUND: Feather pecking and cannibalism are major concerns in poultry farming, both in terms of animal welfare and farm economics. Genetic selection and introduction of (aspects of) maternal care have been suggested as potential interventions to reduce feather pecking in laying hens. Altered brain development has been proposed to reflect welfare states in animals, and can provide more insight into the underlying processes involved in feather pecking. Both vasotocin (the avian homologue of vasopressin) and dopaminergic neural circuitry have roles in control of social behaviors as well as in the stress response, and may be linked to feather pecking. Thus, the hypothalamus of adult laying hens selected for low early mortality (LML), which show low feather pecking, was examined and compared with a control line of adult laying hens selected for production characteristics only (CL). The effect of foster hen rearing on the two genetic lines and their hypothalamic morphology was also investigated. RESULTS: We demonstrated an increase in the number of neurons positive for the rate-limiting enzyme in dopamine production, tyrosine hydroxylase, in the periventricular area of the hypothalamus in the LML hens compared to CL hens. Hen-reared chicks showed more vasotocin -positive neurons in the medial pre-optic area compared to the hens raised without a hen. No correlations were found between behavior in an open field at 5-6 weeks of age, and the histology of the same hens at adulthood. CONCLUSION: The hypothalamic dopaminergic and vasotinergic systems are altered in hens following genetic selection or maternal care, indicating a potential role for these systems in feather pecking.


Assuntos
Comportamento Animal/fisiologia , Galinhas/metabolismo , Hipotálamo/metabolismo , Comportamento Materno/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Vasotocina/metabolismo , Criação de Animais Domésticos , Animais , Cruzamento , Galinhas/genética , Feminino , Hipotálamo/citologia , Seleção Genética
3.
Animals (Basel) ; 9(7)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323729

RESUMO

Both genetic background and maternal care can have a strong influence on cognitive and emotional development. To investigate these effects and their possible interaction, White Leghorn (LH) and Brown Nick (BN) chicks, two hybrid lines of layer hen commonly used commercially, were housed either with or without a mother hen in their first five weeks of life. From three weeks of age, the chicks were tested in a series of experiments to deduce the effects of breed and maternal care on their fear response, foraging and social motivation, and cognitive abilities. The LH were found to explore more and showed more attempts to reinstate social contact than BN. The BN were less active in all tests and less motivated than LH by social contact or by foraging opportunity. No hybrid differences were found in cognitive performance in the holeboard task. In general, the presence of a mother hen had unexpectedly little effect on behavior in both LH and BN chicks. It is hypothesized that hens from commercially used genetic backgrounds may have been inadvertently selected to be less responsive to maternal care than ancestral or non-commercial breeds. The consistent and strong behavioral differences between genetic strains highlights the importance of breed-specific welfare management processes.

4.
PLoS One ; 13(10): e0205686, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359390

RESUMO

Biogenic amines modulate a range of social behaviours, including sociability and mechanisms of group cohesion, in both vertebrates and invertebrates. Here, we tested if the biogenic amines modulate honey bee (Apis mellifera) sociability and nestmate affiliation. We examined the consequences of treatments with biogenic amines, agonists and antagonists on a bee's approach to, and subsequent social interactions with, conspecifics in both naturally hive-reared bees and isolated bees. We used two different treatment methods. Bees were first treated topically with compounds dissolved in the solvent dimethylformamide (dMF) applied to the dorsal thorax, but dMF had a significant effect on the locomotion and behaviour of the bees during the behavioural test that interfered with their social responses. Our second method used microinjection to deliver biogenic amines to the head capsule via the ocellar tract. Microinjection of dopamine and a dopamine antagonist had strong effects on bee sociability, likelihood of interaction with bees, and nestmate affiliation. Octopamine treatment reduced social interaction with other bees, and serotonin increased the likelihood of social interactions. HPLC measurements showed that isolation reduced brain levels of biogenic amines compared to hive-reared bees. Our findings suggest that dopamine is an important neurochemical component of social motivation in bees. This finding advances a comparative understanding of the processes of social evolution.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Aminas Biogênicas/fisiologia , Comportamento de Nidação/fisiologia , Comportamento Social , Animais , Aminas Biogênicas/administração & dosagem , Aminas Biogênicas/análise , Encéfalo/metabolismo , Química Encefálica/fisiologia , Microinjeções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA