Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Microb Ecol ; 84(2): 613-626, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34580739

RESUMO

Rickettsiella species are bacterial symbionts that are present in a great variety of arthropod species, including ixodid ticks. However, little is known about their genetic diversity and distribution in Ixodes ricinus, as well as their relationship with other tick-associated bacteria. In this study, we investigated the occurrence and the genetic diversity of Rickettsiella spp. in I. ricinus throughout Europe and evaluated any preferential and antagonistic associations with Candidatus Midichloria mitochondrii and the pathogens Borrelia burgdorferi sensu lato and Borrelia miyamotoi. Rickettsiella spp. were detected in most I. ricinus populations investigated, encompassing a wide array of climate types and environments. The infection prevalence significantly differed between geographic locations and was significantly higher in adults than in immature life stages. Phylogenetic investigations and protein characterization disclosed four Rickettsiella clades (I-IV). Close phylogenetic relations were observed between Rickettsiella strains of I. ricinus and other arthropod species. Isolation patterns were detected for Clades II and IV, which were restricted to specific geographic areas. Lastly, although coinfections occurred, we did not detect significant associations between Rickettsiella spp. and the other tick-associated bacteria investigated. Our results suggest that Rickettsiella spp. are a genetically and biologically diverse facultative symbiont of I. ricinus and that their distribution among tick populations could be influenced by environmental components.


Assuntos
Coxiellaceae , Ixodes , Animais , Europa (Continente) , Variação Genética , Ixodes/microbiologia , Filogenia
2.
Mol Ecol ; 29(3): 485-501, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846173

RESUMO

Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.


Assuntos
Borrelia/genética , Ixodes/microbiologia , Doença de Lyme/microbiologia , Animais , Doenças das Aves/microbiologia , Europa (Continente) , Humanos , Tipagem de Sequências Multilocus/métodos , Aves Canoras/microbiologia
3.
Microb Ecol ; 79(3): 756-769, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31612324

RESUMO

Wild birds are frequently exposed to the zoonotic tick-borne bacteria Borrelia burgdorferi sensu lato (s.l.), and some bird species act as reservoirs for some Borrelia genospecies. Studying the tropism of Borrelia in the host, how it is sequestered in different organs, and whether it is maintained in circulation and/or in the host's skin is important to understand pathogenicity, infectivity to vector ticks and reservoir competency.We evaluated tissue dissemination of Borrelia in blackbirds (Turdus merula) and great tits (Parus major), naturally and experimentally infected with Borrelia genospecies from enzootic foci. We collected both minimally invasive biological samples (feathers, skin biopsies and blood) and skin, joint, brain and visceral tissues from necropsied birds. Infectiousness of the host was evaluated through xenodiagnoses and infection rates in fed and moulted ticks. Skin biopsies were the most reliable method for assessing avian hosts' Borrelia infectiousness, which was supported by the agreement of infection status results obtained from the analysis of chin and lore skin samples from necropsied birds and of their xenodiagnostic ticks, including a significant correlation between the estimated concentration of Borrelia genome copies in the skin and the Borrelia infection rate in the xenodiagnostic ticks. This confirms a dermatropism of Borrelia garinii, B. valaisiana and B. turdi in its avian hosts. However, time elapsed from exposure to Borrelia and interaction between host species and Borrelia genospecies may affect the reliability of skin biopsies. The blood was not useful to assess infectiousness of birds, even during the period of expected maximum spirochetaemia. From the tissues sampled (foot joint, liver, spleen, heart, kidney, gut and brain), Borrelia was detected only in the gut, which could be related with infection mode, genospecies competition, genospecies-specific seasonality and/or excretion processes.


Assuntos
Doenças das Aves/microbiologia , Grupo Borrelia Burgdorferi/fisiologia , Reservatórios de Doenças/veterinária , Doença de Lyme/veterinária , Aves Canoras , Animais , Reservatórios de Doenças/microbiologia , Vetores de Doenças , Feminino , Doença de Lyme/microbiologia , Masculino
4.
Proc Biol Sci ; 286(1903): 20190759, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31138073

RESUMO

Many vector-borne diseases are transmitted through complex pathogen-vector-host networks, which makes it challenging to identify the role of specific host groups in disease emergence. Lyme borreliosis in humans is now the most common vector-borne zoonosis in the Northern Hemisphere. The disease is caused by multiple genospecies of Borrelia burgdorferi sensu lato bacteria transmitted by ixodid (hard) ticks, and the major host groups transmit Borrelia genospecies with different pathogenicity, causing variable clinical symptoms in humans. The health impact of a given host group is a function of the number of ticks it infects as well as the pathogenicity of the genospecies it carries. Borrelia afzelii, with mainly small mammals as reservoirs, is the most common pathogen causing Lyme borreliosis, and it is often responsible for the largest proportion of infected host-seeking tick nymphs in Europe. The bird-borne Borrelia garinii, though less prevalent in nymphal ticks, is more likely to cause Lyme neuroborreliosis, but whether B. garinii causes disseminated disease more frequently has not been documented. Based on extensive data of annual disease incidence across Norway from 1995 to 2017, we show here that 69% of disseminated Lyme borreliosis cases were neuroborreliosis, which is three times higher than predicted from the infection prevalence of B. garinii in host-seeking ticks (21%). The population estimate of migratory birds, mainly of thrushes, explained part of the annual variation in cases of neuroborreliosis, with a one-year time lag. We highlight the important role of the genospecies' pathogenicity and the host associations for understanding the epidemiology of disseminated Lyme borreliosis.


Assuntos
Doenças das Aves/epidemiologia , Aves , Grupo Borrelia Burgdorferi/isolamento & purificação , Neuroborreliose de Lyme/veterinária , Animais , Doenças das Aves/microbiologia , Neuroborreliose de Lyme/epidemiologia , Neuroborreliose de Lyme/microbiologia , Noruega/epidemiologia , Dinâmica Populacional , Prevalência
5.
Environ Microbiol ; 19(5): 1857-1867, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28152581

RESUMO

The principal European vector for Borrelia burgdorferi s.l., the causative agents of Lyme disease, is the host-generalist tick Ixodes ricinus. Almost all terrestrial host-specialist ticks have been supposed not to contribute to the terrestrial Borrelia transmission cycles. Through an experiment with blackbirds, we show successful transmission by the widespread I. frontalis, an abundant bird-specialized tick that infests a broad range of songbirds. In the first phase of the experiment, we obtained Borrelia-infected I. frontalis (infection rate: 19%) and I. ricinus (17%) nymphs by exposing larvae to wild blackbirds that carried several genospecies (Borrelia turdi, B. valaisiana, B. burgdorferi s.s.). In the second phase, pathogen-free blackbirds were exposed to these infected nymphs. Both tick species were able to infect the birds, as indicated by the analysis of xenodiagnostic I. ricinus larvae which provided evidence for both co-feeding and systemic transmission (infection rates: 10%-60%). Ixodes frontalis was shown to transmit B. turdi spirochetes, while I. ricinus transmitted both B. turdi and B. valaisiana. Neither species transmitted B. burgdorferi s.s. European enzootic cycles of Borrelia between songbirds and their ornithophilic ticks do exist, with I. ricinus potentially acting as a bridging vector towards mammals, including man.


Assuntos
Doenças das Aves/transmissão , Borrelia burgdorferi/crescimento & desenvolvimento , Insetos Vetores/microbiologia , Ixodes/microbiologia , Doença de Lyme/transmissão , Aves Canoras/microbiologia , Animais , Doenças das Aves/microbiologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/isolamento & purificação , Europa (Continente) , Larva/crescimento & desenvolvimento , Doença de Lyme/microbiologia
6.
Mol Ecol ; 26(11): 2905-2921, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28281305

RESUMO

Ecological specialization to restricted diet niches is driven by obligate, and often maternally inherited, symbionts in many arthropod lineages. These heritable symbionts typically form evolutionarily stable associations with arthropods that can last for millions of years. Ticks were recently found to harbour such an obligate symbiont, Coxiella-LE, that synthesizes B vitamins and cofactors not obtained in sufficient quantities from blood diet. In this study, the examination of 81 tick species shows that some Coxiella-LE symbioses are evolutionarily stable with an ancient acquisition followed by codiversification as observed in ticks belonging to the Rhipicephalus genus. However, many other Coxiella-LE symbioses are characterized by low evolutionary stability with frequent host shifts and extinction events. Further examination revealed the presence of nine other genera of maternally inherited bacteria in ticks. Although these nine symbionts were primarily thought to be facultative, their distribution among tick species rather suggests that at least four may have independently replaced Coxiella-LE and likely represent alternative obligate symbionts. Phylogenetic evidence otherwise indicates that cocladogenesis is globally rare in these symbioses as most originate via horizontal transfer of an existing symbiont between unrelated tick species. As a result, the structure of these symbiont communities is not fixed and stable across the tick phylogeny. Most importantly, the symbiont communities commonly reach high levels of diversity with up to six unrelated maternally inherited bacteria coexisting within host species. We further conjecture that interactions among coexisting symbionts are pivotal drivers of community structure both among and within tick species.


Assuntos
Bactérias/classificação , Evolução Biológica , Coxiella/isolamento & purificação , Simbiose , Carrapatos/microbiologia , Animais , Bactérias/isolamento & purificação , Filogenia
7.
Environ Microbiol ; 18(3): 988-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26627444

RESUMO

We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks.


Assuntos
Doenças das Aves/transmissão , Ixodes/microbiologia , Aves Canoras/microbiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/transmissão , Anaplasma/crescimento & desenvolvimento , Animais , Doenças das Aves/microbiologia , Grupo Borrelia Burgdorferi/crescimento & desenvolvimento , Coinfecção , Rickettsia/crescimento & desenvolvimento
8.
Parasitology ; 143(10): 1310-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27173094

RESUMO

Lyme disease is caused by bacteria of the Borrelia burgdorferi genospecies complex and transmitted by Ixodid ticks. In North America only one pathogenic genospecies occurs, in Europe there are several. According to the dilution effect hypothesis (DEH), formulated in North America, nymphal infection prevalence (NIP) decreases with increasing host diversity since host species differ in transmission potential. We analysed Borrelia infection in nymphs from 94 forest stands in Belgium, which are part of a diversification gradient with a supposedly related increasing host diversity: from pine stands without to oak stands with a shrub layer. We expected changing tree species and forest structure to increase host diversity and decrease NIP. In contrast with the DEH, NIP did not differ between different forest types. Genospecies diversity however, and presumably also host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbour Borrelia afzelii infection more often in pine stands while Borrelia garinii and Borrelia burgdorferi ss. infection appeared to be more prevalent in oak stands. This has important health consequences, since the latter two cause more severe disease manifestations. We show that the DEH must be nuanced for Europe and should consider the response of multiple pathogenic genospecies.


Assuntos
Vetores Aracnídeos/parasitologia , Borrelia burgdorferi/fisiologia , Florestas , Ixodes/parasitologia , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Animais , Vetores Aracnídeos/fisiologia , Bélgica/epidemiologia , Biodiversidade , Borrelia burgdorferi/genética , Europa (Continente)/epidemiologia , Ixodes/fisiologia , Doença de Lyme/transmissão , América do Norte/epidemiologia , Ninfa/microbiologia , Pinus/microbiologia , Reação em Cadeia da Polimerase , Quercus/microbiologia
9.
Environ Microbiol ; 16(9): 2859-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24118930

RESUMO

We investigated to what extent a European songbird (Parus major) selectively transmits and amplifies Borrelia burgdorferi s.l. bacteria. Borrelia-naïve birds were recurrently exposed to Ixodes ricinus nymphs carrying a community of more than 34 5S-23S genotypes belonging to five genospecies (Borrelia garinii, Borrelia valaisiana, Borrelia afzelii, B. burgdorferi s.s. and Borrelia spielmanii). Fed ticks were screened for Borrelia after moulting. We found evidence for co-feeding transmission of avian and possibly also mammalian genotypes. Throughout the course of infestations, the infection rate of B. garinii and B. valaisiana increased, indicating successful amplification and transmission, while the infection rate for B. afzelii, B. burgdorferi s.s and B. spielmanii tended to decrease. Within the B. garinii and B. valaisiana genotype communities, certain genotypes were transmitted more than others. Moreover, birds were able to host mixed infections of B. garinii and B. valaisiana, as well as mixed infections of genotypes of the same genospecies. We experimentally show that resident songbirds transmit a broad range of Borrelia genotypes, but selectively amplify certain genotypes, and that one bird can transmit simultaneously several genotypes. Our results highlight the need to explicitly consider the association between genotypes and hosts, which may offer opportunities to point out which hosts are most responsible for the Borrelia presence in questing ticks.


Assuntos
Borrelia/classificação , Ixodes/microbiologia , Doença de Lyme/transmissão , Aves Canoras/microbiologia , Animais , Borrelia/genética , Genótipo
10.
Environ Microbiol ; 16(4): 1081-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24237635

RESUMO

Our study tested whether two European bird-specialized ticks, Ixodes arboricola and I. frontalis, can act as vectors in the transmission cycles of Borrelia burgdorferi s.l. The ticks have contrasting ecologies but share songbird hosts (such as the great tit, Parus major) with the generalist I. ricinus which may therefore act as a bridging vector. In the first phase of the experiment, we obtained Borrelia-infected ornithophilic nymphs by exposing larvae to great tits that had previously been exposed to I. ricinus nymphs carrying a community of genospecies (Borrelia garinii, valaisiana, afzelii, burgdorferi s.s., spielmanii). Skin samples showed that birds selectively amplified B. garinii and B. valaisiana. The spirochetes were transmitted to the ornithophilic ticks and survived moulting, leading to infection rates of 16% and 27% in nymphs of I. arboricola and I. frontalis respectively. In the second phase, pathogen-free great tits were exposed to the Borrelia-infected ornithophilic nymphs. None of these ticks were able to infect the birds, as indicated by the tissue samples. Analysis of xenodiagnostic I. ricinus larvae found no evidence for co-feeding or systemic transmission of B. burgdorferi s.l. These outcomes do not support the occurrence of enzootic cycles of Borrelia burgdorferi s.l. involving songbirds and their specialized ornithophilic ticks.


Assuntos
Borrelia burgdorferi/fisiologia , Interações Hospedeiro-Parasita , Ixodes/fisiologia , Aves Canoras/parasitologia , Animais , Feminino , Aves Canoras/fisiologia
11.
Sci Total Environ ; 919: 170749, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340833

RESUMO

Studies on density and pathogen prevalence of Ixodes ricinus indicate that vegetation and local host community drive much of their variation between green spaces. Contrarily, micro-geographic variation is understudied, although its understanding could reduce disease risk. We studied the density of infectious nymphal Ixodes sp. ("DIN", proxy for disease hazard), density of questing nymphs ("DON") and nymphal infection prevalence ("NIP") near recreational forest infrastructure. Drag sampling within forest stands and at adjacent benches and trails was combined with vegetation surveys, camera trapping hosts and pathogen screening of ticks. We analysed Borrelia burgdorferi s.l. and its genospecies, with complementary analyses on Rickettsia sp., Anaplasma phagocytophilum, Neoehrlichia mikurensis and Borrelia miyamotoi. DIN was highest in forest interior and at trails enclosed by forest. Lower disease hazard was observed at benches and trails at forest edges. This infrastructure effect can be attributed to variation in vegetation characteristics and the habitat use of tick hosts, specifically roe deer, rodents and songbirds. DON is the main driver of DIN at micro-geographic scale and negatively affected by infrastructure and forest edges. A positive association with vegetation cover in understorey and canopy was observed, as were positive trends for local rodent and songbird abundance. NIP of different pathogens was affected by different drivers. Lower B. burgdorferi s.l. prevalence in the interior of forest stands, driven by its most prevalent genospecies B. afzelii, points towards higher density of uninfected hosts there. B. afzelii was positively associated with understorey containing tall species and with high canopy cover, whereas local bird community composition predicts B. garinii prevalence. A positive effect of songbird abundance and a negative effect of pigeons were observed. Our findings support amplification and inhibition mechanisms within forest stands and highlight that the effect of established drivers of DIN may differ based on the considered spatial scale.


Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doenças Transmitidas por Carrapatos , Animais , Florestas , Ecossistema , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Roedores
12.
Int J Parasitol Drugs Drug Resist ; 24: 100519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168594

RESUMO

Rhipicephalus (Boophilus) microplus is one of the most successful ticks infesting cattle around the world. This highly-invasive species transmits cattle parasites that cause cattle fever leading to a high socio-economic burden. Tick eradication programs have often failed, due to the development of acaricide resistance. Here we characterize acaricide resistance in a large number of tick isolates from regions in South Africa (KwaZulu Natal, Mpumalanga, Western & Eastern Cape provinces) and two Brazilian regions. By means of Larval Packet Tests (LPT's) acaricide resistance was evaluated against five commonly used acaricides (chlorfenvinphos, fipronil, deltamethrin, amitraz, and ivermectin). Furthermore, the coding region containing the knock down resistance (kdr) mutation, known to result in pyrethroid resistance, was sequenced. Resistance to at least one acaricide class was reported in each of the five regions, and a high proportion of tick isolates exhibited multi-resistance to at least two acaricide classes (range: 22.2-80.0%). Furthermore, resistance ratios (RR) showed high spatial variation (intercontinental, as well as regional) but low regional spatial autocorrelation. Previous and current acaricide use correlated with current RR, and several combinations of acaricide RR were positively correlated. Moreover, fipronil resistance tended to be higher in farms with more intense acaricide use. The kdr-mutations provided the ticks a fitness advantage under the selection pressure of synthetic pyrethroids based on population (kdr-allele frequency) and individual level data (genotypes). The data show the threat of acaricide (multi-)resistance is high in Brazil and South Africa, but acaricide specific levels need to be assessed locally. For this purpose, gathering complementary molecular information on mutations that underlie resistance can reduce costs and expedite necessary actions. In an era of human-caused habitat alterations, implementing molecular data-driven programs becomes essential in overcoming tick-induced socio-economic losses.


Assuntos
Acaricidas , Piretrinas , Rhipicephalus , Animais , Bovinos , Humanos , Acaricidas/farmacologia , Rhipicephalus/genética , Brasil/epidemiologia , África do Sul/epidemiologia , Piretrinas/farmacologia , Genótipo
13.
Mol Ecol Resour ; 24(5): e13969, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747336

RESUMO

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.


Assuntos
Variação Genética , Polimorfismo de Nucleotídeo Único , Aves Canoras , Animais , Aves Canoras/genética , Aves Canoras/classificação , Genética Populacional/métodos , Europa (Continente) , Passeriformes/genética , Passeriformes/classificação , Haplótipos/genética , Recombinação Genética , Seleção Genética
14.
Environ Microbiol ; 15(2): 663-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279105

RESUMO

We examined the Borrelia burgdorferi sensu lato circulation in a tick community consisting of three species (Ixodes ricinus, I. frontalis, I. arboricola) with contrasting ecologies, but sharing two European songbird hosts (Parus major and Cyanistes caeruleus). Parus major had the highest infestation rates, primarily due to larger numbers of I. ricinus, and probably because of their greater low-level foraging. The prevalence of Borrelia in feeding ticks did not significantly differ between the two bird species; however, P. major in particular hosted large numbers of Borrelia-infected I. frontalis and I. ricinus larvae, suggesting that the species facilitates Borrelia transmission. The low but significant numbers of Borrelia in questing I. arboricola ticks also provides the first field data to suggest that it is competent in maintaining Borrelia. Aside from Borrelia garinii, a high number of less dominant genospecies was observed, including several mammalian genospecies and the first record of Borrelia turdi for North-Western Europe. Borrelia burgdorferi sensu lato IGS genotypes were shared between I. arboricola and I. ricinus and between I. frontalis and I. ricinus, but not between I. arboricola and I. frontalis. This suggests that the Borrelia spp. transmission cycles can be maintained by bird-specific ticks, and bridged by I. ricinus to other hosts outside bird-tick cycles.


Assuntos
Doenças das Aves/transmissão , Borrelia burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/veterinária , Aves Canoras/microbiologia , Infestações por Carrapato/veterinária , Animais , Vetores Aracnídeos/microbiologia , Bélgica/epidemiologia , Doenças das Aves/epidemiologia , Doenças das Aves/microbiologia , Borrelia/fisiologia , Borrelia burgdorferi/genética , Feminino , Genótipo , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Filogenia , Prevalência , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/microbiologia
15.
Parasit Vectors ; 16(1): 206, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337296

RESUMO

BACKGROUND: The majority of the African population lives in rural areas and depends on agriculture for their livelihoods. To increase the productivity and sustainability of their farms, they need access to affordable yield-enhancing inputs of which parasite control is of paramount importance. We therefore determined the status of current tick species with the highest economic impact on cattle by sampling representative numbers of animals in each of seven sub-Saharan countries. METHODS: Data included tick species' half-body counts from approximately 120 cattle at each of two districts per country, collected four times in approximately 1 year (to include seasonality). Study sites were chosen in each country to include high cattle density and tick burden. RESULTS: East Africa (Ethiopia, Uganda and Tanzania) showed overall a higher diversity and prevalence in tick infestations compared to West African countries (Benin, Burkina Faso, Ghana and Nigeria). In East Africa, Amblyomma variegatum (vector of Ehrlichia ruminantium), Rhipicephalus microplus (Babesia bovis, B. bigemina, Anaplasma marginale), R. evertsi evertsi (A. marginale) and R. appendiculatus (Theileria parva) were the most prevalent tick species of economic importance. While the latter species was absent in West Africa, here both A. variegatum and R. microplus occurred in high numbers. Rhipicephalus microplus had spread to Uganda, infesting half of the cattle sampled. Rhipicephalus appendiculatus is known for its invasive behaviour and displacement of other blue tick species, as observed in other East and West African countries. Individual cattle with higher body weights, as well as males, were more likely to be infested. For six tick species, we found reduced infestation levels when hosts were treated with anti-parasiticides. CONCLUSIONS: These baseline data allow the determination of possible changes in presence and prevalence of ticks in each of the countries targeted, which is of importance in the light of human-caused climate and habitat alterations or anthropogenic activities. As many of the ticks in this study are vectors of important pathogens, but also, as cattle may act as end hosts for ticks of importance to human health, our study will help a wide range of stakeholders to provide recommendations for tick infestation surveillance and prevention.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Humanos , Masculino , Animais , Bovinos , Gado , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/parasitologia , Doenças dos Bovinos/parasitologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Uganda/epidemiologia , Burkina Faso
16.
Parasit Vectors ; 16(1): 117, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998091

RESUMO

BACKGROUND: The majority of the African population lives in rural areas where they heavily depend on crop and livestock production for their livelihoods. Given their socio-economic importance, we initiated a standardized multi-country (Benin, Burkina Faso, Ghana, Nigeria, Ethiopia Tanzania and Uganda) surveillance study to assess the current status of important tick-borne haemoparasites (TBHPs) of cattle. METHODS: We assessed pathogen prevalences (Anaplasma marginale, Anaplasma centrale, Babesia bigemina, Babesia bovis, Ehrlichia ruminantium, and Theileria parva) in the blood of 6447 animals spread over fourteen districts (two districts per country). In addition, we screened for intrinsic (sex, weight, body condition) and extrinsic (husbandry, tick exposure) risk factors as predictors of infections with TBHPs. RESULTS: There was a large macro-geographic variation observed in A. marginale, B. bigemina, B. bovis and E. ruminantium prevalences. Most correlated with the co-occurrence of their specific sets of vector-competent ticks. Highest numbers of infected cattle were found in Ghana and Benin, and lowest in Burkina Faso. While T. parva was seldomly found (Uganda only: 3.0%), A. marginale was found in each country with a prevalence of at least 40%. Babesia bovis infected individuals had lower body condition scores. Age (as estimated via body weight) was higher in A. marginale infected cattle, but was negatively correlated with B. bigemina and E. ruminantium prevalences. Ehrlichia ruminantium infection was more often found in males, and A. marginale more often in transhumance farming. High levels of co-infection, especially the combination A. marginale × B. bigemina, were observed in all countries, except for Uganda and Burkina Faso. Babesia bigemina was more or less often observed than expected by chance, when cattle were also co-infected with E. ruminantium or A. marginale, respectively. CONCLUSIONS: Tick-borne pathogens of cattle are ubiquitous in African's smallholder cattle production systems. Our standardized study will help a wide range of stakeholders to provide recommendations for TBHP surveillance and prevention in cattle, especially for B. bovis which heavily impacts production and continues its spread over the African continent via the invasive Rhipicephalus microplus tick.


Assuntos
Anaplasmose , Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Ehrlichiose , Rhipicephalus , Theileriose , Doenças Transmitidas por Carrapatos , Masculino , Bovinos , Animais , Theileriose/parasitologia , Babesiose/parasitologia , Gado , Anaplasmose/epidemiologia , Doenças dos Bovinos/parasitologia , Burkina Faso/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/parasitologia
17.
Ticks Tick Borne Dis ; 13(6): 102035, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095976

RESUMO

The distribution of ticks in the Ixodes ricinus species complex is partly driven by climate, with temperature and relative humidity affecting survival. These variables are driven by macroclimate, but vary locally due to microclimate buffering. This buffering has been suggested to be one of the driving forces behind variation in tick survival and density in time and space. In order to understand the role of the herb layer with respect to this variation, we deployed I. ricinus within an existing experimental setup studying the response of forest understorey to micrometeorological changes. This allowed for the analysis of both direct effects of warming on tick survival in controlled field conditions, as well as indirect effects through changes in herb layer biomass. Herb layer biomass estimates were observed to be higher in plots that had been experimentally warmed, with a trend towards higher survival in these warmed plots. This marginal increase in survival rate may be due to increased microclimate buffering. Comparing our results to literature implies that canopy and shrub layer vegetation have a larger effect on climate buffering, and therefore also on tick survival. Since the herb layer biomass is expected to increase due to global warming and increased frequency of disturbance-induced canopy gaps, survival in forested habitats may increase in the future. This would increase the difference in survival compared to that in open habitats.

18.
Parasit Vectors ; 15(1): 316, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071436

RESUMO

BACKGROUND: Mate choice is a fundamental element of sexual selection and has the potential to shape the evolution of traits. Mate choice based on body size has been shown to be a common trait in several arthropod species. In hard ticks, a taxon of medical and veterinary importance, engorgement weight is positively correlated with reproductive output but it is unknown whether adult males show mate choice. Here, we experimentally investigated whether males (i) use chemical cues to choose their mating partner, (ii) consistently choose for the same female individual and (iii) prefer females with highest weight after feeding. METHODS: We used two experimental setups which allowed chemical communication between ticks: (i) a horizontal tube preventing physical contact with the female and (ii) an arena where tactile cues were allowed. In total, we tested 62 different triads in 124 tests (66 tests in the horizontal tube and 58 in the arena) composed of one male that could choose between two engorged females. Specifically, we tested 42 triads in the tube and 46 in the arena; 24 triads were repeatedly tested in the tube while 38 triads were tested in both setups. RESULTS: We found no preference for individual or heavier females in either setup. However, in the horizontal tube setup, males significantly preferred females that were not visited by them in the previous test. CONCLUSIONS: Our results suggest a lack of male mate choice despite heavier females having higher fecundity. However, future studies should take into account that males may recognize the potential mating partners they previously met.


Assuntos
Ixodidae , Reprodução , Animais , Tamanho Corporal , Sinais (Psicologia) , Feminino , Fertilidade , Masculino
19.
Evolution ; 76(4): 799-816, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238032

RESUMO

Little is known about the intraspecific variation of parasite life-history traits and how this variation may affect parasite fitness and evolution. We investigated how life-history traits predict success of individual tree-hole ticks Ixodes arboricola and estimated their evolutionary potential, as well as genetic correlations within stages and phenotypic correlations within and across stages. Ticks were followed individually over two generations while allowed to feed on great tits Parus major. After accounting for host and tick maternal effects, we found that short feeding times and high engorgement weights strongly increased molting success. Molting time was also positively correlated with feeding success in adults. In larvae and nymphs, we found negative phenotypic correlations between engorgement weight and both feeding and molting time, the latter supported by a negative genetic correlation. We found sex-related differences in feeding time (longer in male nymphs) and molting time (longer in male larvae but shorter in male nymphs). Also, time since the last feeding event (set experimentally) reduced larval and nymphal fitness, whereas it increased adult female fitness. Furthermore, we found significant heritability and evolvability, that is, the potential to respond to selection, for engorgement weight and molting time across all stages but no significant heritability for feeding time. Our findings suggest that variation in tick fitness is shaped by consistent individual differences in tick quality, for which engorgement weight is a good proxy, rather than by life-history trade-offs.


Assuntos
Ixodes , Características de História de Vida , Passeriformes , Animais , Comportamento Alimentar , Feminino , Larva , Masculino , Ninfa/genética
20.
Parasit Vectors ; 15(1): 380, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271430

RESUMO

BACKGROUND: Microbial communities can affect disease risk by interfering with the transmission or maintenance of pathogens in blood-feeding arthropods. Here, we investigated whether bacterial communities vary between Ixodes ricinus nymphs which were or were not infected with horizontally transmitted human pathogens. METHODS: Ticks from eight forest sites were tested for the presence of Borrelia burgdorferi sensu lato, Babesia spp., Anaplasma phagocytophilum, and Neoehrlichia mikurensis by quantitative polymerase chain reaction (qPCR), and their microbiomes were determined by 16S rRNA amplicon sequencing. Tick bacterial communities clustered poorly by pathogen infection status but better by geography. As a second approach, we analysed variation in tick microorganism community structure (in terms of species co-infection) across space using hierarchical modelling of species communities. For that, we analysed almost 14,000 nymphs, which were tested for the presence of horizontally transmitted pathogens B. burgdorferi s.l., A. phagocytophilum, and N. mikurensis, and the vertically transmitted tick symbionts Rickettsia helvetica, Rickettsiella spp., Spiroplasma ixodetis, and Candidatus Midichloria mitochondrii. RESULTS: With the exception of Rickettsiella spp., all microorganisms had either significant negative (R. helvetica and A. phagocytophilum) or positive (S. ixodetis, N. mikurensis, and B. burgdorferi s.l.) associations with M. mitochondrii. Two tick symbionts, R. helvetica and S. ixodetis, were negatively associated with each other. As expected, both B. burgdorferi s.l. and N. mikurensis had a significant positive association with each other and a negative association with A. phagocytophilum. Although these few specific associations do not appear to have a large effect on the entire microbiome composition, they can still be relevant for tick-borne pathogen dynamics. CONCLUSIONS: Based on our results, we propose that M. mitochondrii alters the propensity of ticks to acquire or maintain horizontally acquired pathogens. The underlying mechanisms for some of these remarkable interactions are discussed herein and merit further investigation. Positive and negative associations between and within horizontally and vertically transmitted symbionts.


Assuntos
Anaplasma phagocytophilum , Anaplasmataceae , Borrelia burgdorferi , Ixodes , Rickettsia , Animais , Humanos , RNA Ribossômico 16S/genética , Ixodes/microbiologia , Rickettsia/genética , Anaplasma phagocytophilum/genética , Borrelia burgdorferi/genética , Anaplasmataceae/genética , Ninfa/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA