Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biochem Biophys Res Commun ; 662: 58-65, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099811

RESUMO

The neurotransmitter serotonin (5-HT) is transported back into serotonergic neurons by the serotonin transporter (SERT). SERT is a main target of antidepressants, and much effort has therefore focused on finding relationships between SERT and depression. However, it is not fully understood how SERT is regulated at the cellular level. Here, we report post-translational regulation of SERT by S-palmitoylation, in which palmitate is covalently attached to cysteine residues of proteins. Using AD293 cells (a human embryonic kidney 293-derived cell line with improved cell adherence) transiently transfected with FLAG-tagged human SERT, we observed S-palmitoylation of immature SERT containing high-mannose type N-glycans or no N-glycan, which is presumed to be localized in the early secretory pathway, such as the endoplasmic reticulum. Mutational analysis by alanine substitutions shows that S-palmitoylation of immature SERT occurs at least at Cys-147 and Cys-155, juxtamembrane cysteine residues within the first intracellular loop. Furthermore, mutation of Cys-147 reduced cellular uptake of a fluorescent SERT substrate that mimics 5-HT without decreasing SERT on the cell surface. On the other hand, combined mutation of Cys-147 and Cys-155 inhibited SERT surface expression and reduced the uptake of the 5-HT mimic. Thus, S-palmitoylation of Cys-147 and Cys-155 is important for both the cell surface expression and 5-HT uptake capacity of SERT. Given the importance of S-palmitoylation in brain homeostasis, further investigation of SERT S-palmitoylation could provide new insights into the treatment of depression.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Humanos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Lipoilação , Cisteína/metabolismo , Membrana Celular/metabolismo
2.
J Pharmacol Sci ; 153(1): 55-67, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524455

RESUMO

Microglial removal of dying cells plays a beneficial role in maintaining homeostasis in the CNS, whereas under some pathological conditions, inflammatory microglia can cause excessive clearance, leading to neuronal death. However, the mechanisms underlying dying cell removal by inflammatory microglia remain poorly understood. In this study, we performed live imaging to examine the purinergic regulation of dying cell removal by inflammatory activated microglia. Lipopolysaccharide (LPS) stimulation induces rapid death of primary rat microglia, and the surviving microglia actively remove dying cells. The nonselective P2 receptor antagonist, suramin, inhibited dying cell removal to the same degree as that of the selective P2Y2 antagonist, AR-C118925. This inhibition was more potent in LPS-stimulated microglia than in non-stimulated ones. LPS stimulation elicited distribution of the P2Y2 receptor on the leading edge of the plasma membrane and then induced drastic upregulation of P2Y2 receptor mRNA expression in microglia. LPS stimulation caused upregulation of the dying cell-sensing inflammatory Axl phagocytic receptor, which was suppressed by blocking the P2Y2 receptor and its downstream signaling effector, proline-rich tyrosine kinase (Pyk2). Together, these results indicate that inflammatory stimuli may activate the P2Y2 receptor, thereby mediating dying cell removal, at least partially, through upregulating phagocytic Axl in microglia.


Assuntos
Lipopolissacarídeos , Microglia , Ratos , Animais , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Proteínas Tirosina Quinases/metabolismo , Apoptose
3.
Mol Cell Neurosci ; 118: 103691, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871769

RESUMO

During neuronal development, immature neurons extend neurites and subsequently polarize to form an axon and dendrites. We have previously reported that G protein-coupled receptor 3 (GPR3) levels increase during neuronal development, and that GPR3 has functions in neurite outgrowth and neuronal differentiation in cerebellar granular neurons. Moreover, GPR3 is transported and concentrated at the tips of neurite, thereby contributing to the local activation of protein kinase A (PKA). However, the signaling pathways for GPR3-mediated neurite outgrowth and its subsequent effects on neuronal polarization have not yet been elucidated. We therefore analyzed the signaling pathways related to GPR3-mediated neurite outgrowth, and also focused on the possible roles of GPR3 in axon polarization. We demonstrated that, in cerebellar granular neurons, GPR3-mediated neurite outgrowth was mediated by multiple signaling pathways, including those of PKA, extracellular signal-regulated kinases (ERKs), and most strongly phosphatidylinositol 3-kinase (PI3K). In addition, the GPR3-mediated activation of neurite outgrowth was associated with G protein-coupled receptor kinase 2 (GRK2)-mediated signaling and phosphorylation of the C-terminus serine/threonine residues of GPR3, which affected downstream protein kinase B (Akt) signaling. We further demonstrated that GPR3 was transiently increased early in the development of rodent hippocampal neurons. It was subsequently concentrated at the tip of the longest neurite, and was thus associated with accelerated polarity formation in a PI3K-dependent manner in rat hippocampal neurons. In addition, GPR3 knockout in mouse hippocampal neurons led to delayed neuronal polarity formation, thereby affecting the dephosphorylation of collapsing response mediator protein 2 (CRMP2), which is downstream of the PI3K signaling pathway. Taken together, these findings suggest that the intrinsic expression of GPR3 in differentiated neurons constitutively activates PI3K-mediated signaling pathway predominantly, thus accelerating neurite outgrowth and further augmenting polarity formation in primary cultured neurons.


Assuntos
Neurônios , Fosfatidilinositol 3-Quinases , Receptores Acoplados a Proteínas G , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Neuritos/metabolismo , Crescimento Neuronal , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Neurobiol Dis ; 172: 105811, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809764

RESUMO

Glaucoma is an optic neuropathy and is currently one of the most common diseases that leads to irreversible blindness. The axonal degeneration that occurs before retinal ganglion neuronal loss is suggested to be involved in the pathogenesis of glaucoma. G protein-coupled receptor 3 (GPR3) belongs to the class A rhodopsin-type GPCR family and is highly expressed in various neurons. GPR3 is unique in its ability to constitutively activate the Gαs protein without a ligand, which elevates the basal intracellular cAMP level. Our earlier reports suggested that GPR3 enhances both neurite outgrowth and neuronal survival. However, the potential role of GPR3 in axonal regeneration after neuronal injury has not been elucidated. Herein, we investigated retinal GPR3 expression and its possible involvement in axonal regeneration after retinal injury in mice. GPR3 was relatively highly expressed in retinal ganglion cells (RGCs). Surprisingly, RGCs in GPR3 knockout mice were vulnerable to neural death during aging without affecting high intraocular pressure (IOP) and under ischemic conditions. Primary cultured neurons from the retina showed that GPR3 expression was correlated with neurite outgrowth and neuronal survival. Evaluation of the effect of GPR3 on axonal regeneration using GPR3 knockout mice revealed that GPR3 in RGCs participates in axonal regeneration after optic nerve crush (ONC) under zymosan stimulation. In addition, regenerating axons were further stimulated when GPR3 was upregulated in RGCs, and the effect was further augmented when combined with zymosan treatment. These results suggest that GPR3 expression in RGCs helps maintain neuronal survival and accelerates axonal regeneration after ONC in mice.


Assuntos
Glaucoma , Traumatismos do Nervo Óptico , Animais , Axônios/patologia , Glaucoma/metabolismo , Camundongos , Camundongos Knockout , Compressão Nervosa , Regeneração Nervosa/fisiologia , Nervo Óptico , Traumatismos do Nervo Óptico/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Ganglionares da Retina/metabolismo , Zimosan/metabolismo , Zimosan/farmacologia
5.
J Pharmacol Sci ; 148(3): 307-314, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35177210

RESUMO

G protein-coupled receptor 3 (GPR3) constitutively activates Gαs proteins without any ligands and is predominantly expressed in neurons. Since the expression and physiological role of GPR3 in immune cells is still unknown, we examined the possible role of GPR3 in T lymphocytes. The expression of GPR3 was upregulated 2 h after phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation and was sustained in Jurkat cells, a human T lymphocyte cell line. In addition, the expression of nuclear receptor 4 group A member 2 (NR4A2) was highly modulated by GPR3 expression. Additionally, GPR3 expression was linked with the transcriptional promoter activity of NR4A in Jurkat cells. In mouse CD4+ T cells, transient GPR3 expression was induced immediately after the antigen receptor stimulation. However, the expression of NR4A2 was not modulated in CD4+ T cells from GPR3-knockout mice after stimulation, and the population of Treg cells in thymocytes and splenocytes was not affected by GPR3 knockout. By contrast, spontaneous effector activation in both CD4+ T cells and CD8+ T cells was observed in GPR3-knockout mice. In summary, GPR3 is immediately induced by T cell stimulation and play an important role in the suppression of effector T cell activation.


Assuntos
Ativação Linfocitária/genética , Receptores Acoplados a Proteínas G/fisiologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Cromograninas/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Camundongos Knockout , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T/metabolismo
6.
J Pharmacol Sci ; 148(1): 187-195, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924125

RESUMO

Flurbiprofen, a nonsteroidal anti-inflammatory drug, reportedly exhibits chemical chaperone activity. Herein, we investigated the role of flurbiprofen in regulating serotonin transporter (SERT) function via membrane trafficking. We used COS-7 cells transiently expressing wild-type (WT) SERT or a C-terminus-deleted mutant of SERT (SERTΔCT), a misfolded protein. Flurbiprofen treatment reduced the expression of immaturely glycosylated SERT and enhanced the expression of maturely glycosylated SERT. In addition, we observed increased serotonin uptake in SERT-expressing cells. These results suggest that flurbiprofen modulates SERT function by promoting membrane trafficking. In SERTΔCT-expressing cells, flurbiprofen reduced the protein expression and uptake activity of SERTΔCT. Furthermore, flurbiprofen inhibited the formation of SERTΔCT aggregates. Studies using flurbiprofen enantiomers suggested that these effects of flurbiprofen on SERT were not mediated via cyclooxygenase inhibition. The levels of GRP78/BiP, an endoplasmic reticulum (ER) stress marker, were assessed to elucidate whether flurbiprofen can ameliorate SERTΔCT-induced ER stress. Interestingly, flurbiprofen induced GRP78/BiP expression only under ER stress conditions and not under steady-state conditions. In HRD1 E3 ubiquitin ligase knockdown cells, flurbiprofen affected the ER-associated degradation system. Collectively, the findings suggest that flurbiprofen may function as an inducer of molecular chaperones, in addition to functioning as a chemical chaperone.


Assuntos
Anti-Inflamatórios não Esteroides , Flurbiprofeno/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Chaperonas Moleculares , Mutação , Dobramento de Proteína , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Glicosilação , Ubiquitina-Proteína Ligases
7.
Biochem Biophys Res Commun ; 534: 583-589, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243462

RESUMO

To elucidate the regulation of serotonin transporter (SERT) function via its membrane trafficking, we investigated the involvement of the ubiquitin E3 ligase HRD1 (HMG-CoA reductase degradation protein), which participates in endoplasmic reticulum (ER)-associated degradation (ERAD), in the functional regulation of SERT. Cells transiently expressing wild-type SERT or a SERT C-terminal deletion mutant (SERTΔCT), a SERT protein predicted to be misfolded, were used for experiments. Studies using HRD1-overexpressing or HRD1-knockdown cells demonstrated that HRD1 is involved in SERT proteolysis. Overexpression of HRD1 promoted SERT ubiquitination, the effect of which was augmented by treatment with the proteasome inhibitor MG132. Immunoprecipitation studies revealed that HRD1 interacts with SERT in the presence of MG132. In addition, HRD1 was intracellularly colocalized with SERT, especially with aggregates of SERTΔCT in the ER. HRD1 also affected SERT uptake activity in accordance with the expression levels of the SERT protein. These results suggest that HRD1 contributes to the membrane trafficking and functional regulation of SERT through its involvement in ERAD-mediated SERT degradation.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Degradação Associada com o Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Leupeptinas/farmacologia , Inibidores de Proteassoma/farmacologia , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
8.
J Pharmacol Sci ; 145(4): 297-307, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33712280

RESUMO

Herein, we investigated the functional association of the serotonin transporter (SERT) with syntaxin-3 (STX3). We first overexpressed SERT and STX3 in various cells and examined their interaction, localization, and functional association. Immunoprecipitation studies revealed that STX3 interacted with SERT when expressed in COS-7 cells. Immunocytochemical studies revealed that SERT and STX3 were colocalized in the endoplasmic reticulum (ER) and Golgi apparatus. STX3 overexpression significantly reduced the uptake activity of SERT by attenuating its plasma membrane expression, suggesting that overexpressed STX3 anchors SERT in the ER and Golgi apparatus. STX3 knockdown did not affect the uptake activity of SERT but altered its glycosylation state. To elucidate the association of STX3 with SERT under physiological conditions, rather than overexpressing cells, we investigated this interaction in polarized Caco-2 cells, which endogenously express both proteins. Immunocytochemical studies revealed that SERT and STX3 were localized in microvilli-like structures at the apical plasma membrane. STX3 knockdown marginally but significantly decreased the serotonin uptake activity of Caco-2 cells, suggesting that STX3 positively regulates SERT function in Caco-2 cells, as opposed to SERT regulation by STX3 in overexpressing cells. Collectively, STX3 may colocalize with SERT during SERT membrane trafficking and regulate SERT function in an STX3-expressing lesion-dependent manner.


Assuntos
Epistasia Genética/genética , Expressão Gênica/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Microvilosidades/metabolismo , Proteínas Qa-SNARE/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
9.
Mol Cell Neurosci ; 98: 46-53, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31158466

RESUMO

Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia with myoclonus, dystonia, spasticity, and rigidity. Although missense mutations and a deletion mutation have been found in the protein kinase C gamma (PRKCG) gene encoding protein kinase C γ (PKCγ) in SCA14 families, a nonsense mutation has not been reported. The patho-mechanisms underlying SCA14 remain poorly understood. However, gain-of-function mechanisms and loss-of-function mechanisms, but not dominant negative mechanisms, were reported the patho-mechanism of SCA14. We identified the c.226C>T mutation of PRKCG, which caused the p.R76X in PKCγ by whole-exome sequencing in patients presenting cerebellar atrophy with cognitive and hearing impairment. To investigate the patho-mechanism of our case, we studied aggregation formation, cell death, and PKC inhibitory effect by confocal microscopy, western blotting with cleaved caspase 3, and pSer PKC motif antibodies, respectively. PKCγ(R76X)-GFP have aggregations the same as wild-type (WT) PKCγ-GFP. The PKCγ(R76X)-GFP inhibited PKC phosphorylation activity more than GFP alone. It also induced more apoptosis in COS7 and SH-SY5Y cells compared to WT-PKCγ-GFP and GFP. We first reported SCA14 patients with p.R76X in PKCγ who have cerebellar atrophy with cognitive and hearing impairment. Our results suggest that a dominant negative mechanism due to truncated peptides produced by p.R76X may be at least partially responsible for the cerebellar atrophy.


Assuntos
Códon sem Sentido , Proteína Quinase C/genética , Ataxias Espinocerebelares/genética , Adulto , Animais , Apoptose , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Masculino , Proteína Quinase C/metabolismo , Ataxias Espinocerebelares/patologia
10.
J Neurosci ; 38(2): 278-290, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29167402

RESUMO

Protein kinase Cγ (PKCγ) knock-out (KO) animals exhibit symptoms of Parkinson's disease (PD), including dopaminergic neuronal loss in the substantia nigra. However, the PKCγ substrates responsible for the survival of dopaminergic neurons in vivo have not yet been elucidated. Previously, we found 10 potent substrates in the striatum of PKCγ-KO mice. Here, we focused on cysteine string protein α (CSPα), a protein from the heat shock protein (HSP) 40 cochaperone families localized on synaptic vesicles. We found that in cultured cells, PKCγ phosphorylates CSPα at serine (Ser) 10 and Ser34. Additionally, apoptosis was found to have been enhanced by the overexpression of a phosphorylation-null mutant of CSPα, CSPα(S10A/S34A). Compared with wild-type (WT) CSPα, the CSPα(S10A/S34A) mutant had a weaker interaction with HSP70. However, in sharp contrast, a phosphomimetic CSPα(S10D/S34D) mutant, compared with WT CSPα, had a stronger interaction with HSP70. In addition, total levels of synaptosomal-associated protein (SNAP) 25, a main downstream target of the HSC70/HSP70 chaperone complex, were found to have decreased by the CSPα(S10A/S34A) mutant through increased ubiquitination of SNAP25 in PC12 cells. In the striatum of 2-year-old male PKCγ-KO mice, decreased phosphorylation levels of CSPα and decreased SNAP25 protein levels were observed. These findings indicate the phosphorylation of CSPα by PKCγ may protect the presynaptic terminal from neurodegeneration. The PKCγ-CSPα-HSC70/HSP70-SNAP25 axis, because of its role in protecting the presynaptic terminal, may provide a new therapeutic target for the treatment of PD.SIGNIFICANCE STATEMENT Cysteine string protein α (CSPα) is a protein belonging to the heat shock protein (HSP) 40 cochaperone families localized on synaptic vesicles, which maintain the presynaptic terminal. However, the function of CSPα phosphorylation by protein kinase C (PKC) for neuronal cell survival remains unclear. The experiments presented here demonstrate that PKCγ phosphorylates CSPα at serine (Ser) 10 and Ser34. CSPα phosphorylation at Ser10 and Ser34 by PKCγ protects the presynaptic terminal by promoting HSP70 chaperone activity. This report suggests that CSPα phosphorylation, because of its role in modulating HSP70 chaperone activity, may be a target for the treatment of neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Degeneração Neural/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteína Quinase C/metabolismo , Animais , Células COS , Chlorocebus aethiops , Neurônios Dopaminérgicos/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Degeneração Neural/patologia , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Terminações Pré-Sinápticas/patologia , Ratos , Serina/metabolismo
11.
J Pharmacol Sci ; 139(1): 29-36, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30522963

RESUMO

The serotonin transporter (SERT) is functionally regulated via membrane trafficking. Our previous studies have demonstrated that the SERT C-terminal deletion mutant (SERTΔCT) showed a robust decrease in its membrane trafficking and was retained in the endoplasmic reticulum (ER), suggesting that SERTΔCT is an unfolded protein that may cause ER stress. The Sigma-1 receptor (SigR1) has been reported to attenuate ER stress via its chaperone activity. In this study, we investigated the effects of SKF-10047, a prototype SigR1 agonist, on the membrane trafficking and uptake activity of SERT and SERTΔCT expressed in COS-7 cells. Twenty-four hours of SKF-10047 treatment (>200 µM) accelerated SERT membrane trafficking and robustly upregulated SERTΔCT activity. Interestingly, these effects of SKF-10047 on SERT functions were also found in cells in which SigR1 expression was knocked down by shRNA, suggesting that SKF-10047 exerted these effects on SERT via a mechanism independent of SigR1. A cDNA array study identified several candidate genes involved in the mechanism of action of SKF-10047. Among them, Syntaxin3, a member of the SNARE complex, was significantly upregulated by 48 h of SKF-10047 treatment. These results suggest that SKF-10047 is a candidate for ER stress relief.


Assuntos
Membrana Celular/efeitos dos fármacos , Fenazocina/análogos & derivados , Receptores sigma/agonistas , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Mutação , Fenazocina/farmacologia , Transporte Proteico , Receptores sigma/genética , Receptor Sigma-1
12.
J Pharmacol Sci ; 137(1): 20-29, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29699771

RESUMO

Propofol is the most commonly used anesthetic. Immunohistochemical studies have reported that propofol translocated protein kinase Cs (PKCs) in cardiomyocyte in a subtype-specific manner; however detailed features of the propofol-induced translocation of PKCs remain unknown. In this study, we performed real-time observation of propofol-induced PKC translocation in SH-SY5Y cells expressing PKCs fused with a fluorescent protein. Propofol unidirectionally translocated γPKC-GFP, a conventional PKC, and ζPKC-GFP, an atypical PKC, to the plasma membrane and nucleus, respectively, whereas the propofol-induced translocation of novel PKCs was diverse and subtype-specific among δPKC, εPKC and ηPKC. The propofol-induced translocation of εPKC-GFP was especially complicated and diverse, that is, 200 µM propofol first translocated εPKC-GFP to the perinuclear region. Thereafter, εPKC was translocated to the nucleus, followed by translocation to the plasma membrane. Analysis using a mutant εPKC in which the C1 domain was deleted demonstrated that the C1b domain of εPKC was indispensable for its translocation to the perinuclear region and plasma membrane, but not for its nuclear translocation. An in vitro kinase assay revealed that propofol increased the activities of the PKCs activities at the concentration that triggered the translocation. These results suggest that propofol could translocate PKCs to their appropriate target sites in a subtype-specific manner and concomitantly activated PKCs at these sites, contributing to its beneficial or adverse effects.


Assuntos
Anestésicos/farmacologia , Propofol/farmacologia , Proteína Quinase C/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteína Quinase C/química , Proteína Quinase C/classificação , Transporte Proteico/efeitos dos fármacos
13.
Neurobiol Dis ; 68: 215-27, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24769160

RESUMO

G-protein coupled receptor 3 (GPR3), GPR6, and GPR12 belong to a family of constitutively active Gs-coupled receptors that activate 3'-5'-cyclic adenosine monophosphate (cAMP) and are highly expressed in the brain. Among these receptors, the endogenous expression of GPR3 in cerebellar granule neurons (CGNs) is increased following development. GPR3 is important for neurite outgrowth and neural maturation; however, the physiological functions of GPR3 remain to be fully elucidated. Here, we investigated the survival and antiapoptotic functions of GPR3 under normal and apoptosis-inducing culture conditions. Under normal culture conditions, CGNs from GPR3-knockout mice demonstrated lower survival than did CGNs from wild-type or GPR3-heterozygous mice. Cerebellar sections from GPR3-/- mice at P7, P14, and P21 revealed more caspase-3-positive neurons in the internal granular layer than in cerebellar sections from wild-type mice. Conversely, in a potassium-deprivation model of apoptosis, increased expression of these three receptors promoted neuronal survival. The antiapoptotic effect of GPR3 was also observed under hypoxic (1% O2/5% CO2) and reactive oxygen species (ROS)-induced apoptotic conditions. We further investigated the signaling pathways involved in the GPR3-mediated antiapoptotic effect. The addition of the PKA inhibitor KT5720, the MAP kinase inhibitor U0126, and the PI3 kinase inhibitor LY294002 abrogated the GPR3-mediated antiapoptotic effect in a potassium-deprivation model of apoptosis, whereas the PKC inhibitor Gö6976 did not affect the antiapoptotic function of GPR3. Furthermore, downregulation of endogenous GPR3 expression in CGNs resulted in a marked reduction in the basal levels of ERK and Akt phosphorylation under normal culture conditions. Finally, we used a transient middle cerebral artery occlusion (tMCAO) model in wild-type and GPR3-knockout mice to determine whether GPR3 expression modulates neuronal survival after brain ischemia. After tMCAO, GPR3-knockout mice exhibited a significantly larger infarct area than did wild-type mice. Collectively, these in vitro and in vivo results suggest that the developmental expression of constitutively active Gs-coupled GPR3 activates the ERK and Akt signaling pathways at the basal level, thereby protecting neurons from apoptosis that is induced by various stimuli.


Assuntos
Apoptose/genética , Cerebelo/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Fatores Etários , Animais , Cardiotônicos/farmacologia , Sobrevivência Celular/genética , Colforsina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Isquemia/metabolismo , Isquemia/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
15.
Biochem Biophys Res Commun ; 440(1): 25-30, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24021284

RESUMO

Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic. Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the proteins' aggregation. In the present study, we found that the expression of mutant γPKC-GFP increased the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of mutant γPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant γPKC-GFP by inhibiting this mutant's degradation. These findings suggest that mutant γPKC increases the level of Hsp70, which protects cells from the mutant's cytotoxicity by enhancing its degradation.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Mutação de Sentido Incorreto , Proteína Quinase C/genética , Degenerações Espinocerebelares/genética , Regulação para Cima , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Proteína Quinase C/metabolismo , Proteólise , Ataxias Espinocerebelares , Degenerações Espinocerebelares/metabolismo
16.
J Pharmacol Sci ; 121(1): 25-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23269237

RESUMO

To examine the functional regulation of serotonin transporter (SERT) by cAMP, we examined whether SERT uptake activity was affected by dibutyryl cAMP (dbcAMP), a cAMP analog, in SERT-transfected RN46A cells derived from embryonic rat raphe neurons. Long-term exposure (> 4 h) of dbcAMP (1 mM) to SERT-expressing RN46A cells significantly up-regulated SERT activity. In addition, a selective PKA activator, but not a selective EPAC activator, increased the serotonin uptake activity of SERT, suggesting that this regulation was mainly mediated via PKA. Time-dependent up-regulation of SERT activity by dbcAMP was accompanied by neural differentiation of RN46A cells. Further investigation of dbcAMP-induced up-regulation of SERT revealed that dbcAMP elevated SERT protein levels without affecting SERT mRNA transcription. The chase assay for residual SERT protein revealed that dbcAMP slowed its degradation rate. Immunohistochemical analysis revealed that plasma membrane-localized SERT was more abundant in dbcAMP-treated cells than in non-treated cells, suggesting that dbcAMP up-regulated SERT by decreasing its degradation and increasing its plasma membrane expression. These results raise the possibility that the elevation of intracellular cAMP up-regulated SERT function through a mechanism linked to the differentiation of RN46A cells and show the importance of SERT function during the developmental process of the serotonergic nervous system.


Assuntos
Diferenciação Celular/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Neurônios/citologia , Núcleos da Rafe/citologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Células Cultivadas , AMP Cíclico/fisiologia , Neurônios/metabolismo , Núcleos da Rafe/embriologia , Núcleos da Rafe/metabolismo , Ratos , Serotonina/metabolismo
17.
J Pharmacol Sci ; 122(2): 71-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23676312

RESUMO

The serotonin transporter (SERT) is involved in various psychiatric disorders, including depression and autism. Recently, chemical chaperones have been focused as potential therapeutic drugs that can improve endoplasmic reticulum (ER) stress-related pathology. In this study, we used SERTtransfected COS-7 cells to investigate whether 4-phenylbutylate (4-PBA), a chemical chaperone, affects the membrane trafficking and uptake activity of SERT. Treatment with 4-PBA for 24 h dose-dependently increased the uptake activity of SERT. In accordance with increased SERT activity, the expression of maturely glycosylated SERT was increased, while the expression of immaturely glycosylated SERT was decreased. This finding suggests that 4-PBA increased the functional SERT with mature glycosylation via accelerating its folding and trafficking. 4-PBA also increased the activity of the C-terminus-deleted mutant SERT (SERTΔCT), which was stacked in the ER, and decreased SERTΔCT-induced ER stress, further supporting the idea that 4-PBA acts as a chemical chaperone for SERT. Imaging studies showed that fluorescence-labeled SERT was gradually and significantly translocated to the plasma membrane by 4-PBA. These results suggest that 4-PBA and related drugs can potentially affect serotonergic neural transmission by functioning as chaperones, thereby providing a novel therapeutic approach for SERT-related diseases.


Assuntos
Fenilbutiratos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , Terapia de Alvo Molecular , Fenilbutiratos/uso terapêutico , Neurônios Serotoninérgicos/fisiologia , Transmissão Sináptica/efeitos dos fármacos
19.
Eur J Pharmacol ; 955: 175806, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230321

RESUMO

Propofol is widely used for general anesthesia and sedation; however, the mechanisms of its anesthetic and adverse effects are not fully understood. We have previously shown that propofol activates protein kinase C (PKC) and induces its translocation in a subtype-specific manner. The purpose of this study was to identify the PKC domains involved in propofol-induced PKC translocation. The regulatory domains of PKC consist of C1 and C2 domains, and the C1 domain is subdivided into the C1A and C1B subdomains. Mutant PKCα and PKCδ with each domain deleted were fused with green fluorescent protein (GFP) and expressed in HeLa cells. Propofol-induced PKC translocation was observed by time-lapse imaging using a fluorescence microscope. The results showed that persistent propofol-induced PKC translocation to the plasma membrane was abolished by the deletion of both C1 and C2 domains in PKCα and by the deletion of the C1B domain in PKCδ. Therefore, propofol-induced PKC translocation involves the C1 and C2 domains of PKCα and the C1B domain of PKCδ. We also found that treatment with calphostin C, a C1 domain inhibitor, abolished propofol-induced PKCδ translocation. In addition, calphostin C inhibited the propofol-induced phosphorylation of endothelial nitric oxide synthase (eNOS). These results suggest that it may be possible to modulate the exertion of propofol effects by regulating the PKC domains involved in propofol-induced PKC translocation.


Assuntos
Propofol , Proteína Quinase C , Humanos , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo , Propofol/farmacologia , Células HeLa , Isoenzimas/metabolismo , Transporte Proteico
20.
Front Pharmacol ; 14: 1284586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026993

RESUMO

Background and purpose: In this study, we aimed to elucidate the action mechanisms of propofol, particularly those underlying propofol-induced protein kinase C (PKC) translocation. Experimental approach: Various PKCs fused with green fluorescent protein (PKC-GFP) or other GFP-fused proteins were expressed in HeLa cells, and their propofol-induced dynamics were observed using confocal laser scanning microscopy. Propofol-induced PKC activation in cells was estimated using the C kinase activity receptor (CKAR), an indicator of intracellular PKC activation. We also examined PKC translocation using isomers and derivatives of propofol to identify the crucial structural motifs involved in this process. Key results: Propofol persistently translocated PKCα conventional PKCs and PKCδ from novel PKCs (nPKCs) to the plasma membrane (PM). Propofol translocated PKCδ and PKCη of nPKCs to the Golgi apparatus and endoplasmic reticulum, respectively. Propofol also induced the nuclear translocation of PKCζ of atypical PKCs or proteins other than PKCs, such that the protein concentration inside and outside the nucleus became uniform. CKAR analysis revealed that propofol activated PKC in the PM and Golgi apparatus. Moreover, tests using isomers and derivatives of propofol predicted that the structural motifs important for the induction of PKC and nuclear translocation are different. Conclusion and implications: Propofol induced the subtype-specific intracellular translocation of PKCs and activated PKCs. Additionally, propofol induced the nuclear translocation of PKCs and other proteins, probably by altering the permeability of the nuclear envelope. Interestingly, propofol-induced PKC and nuclear translocation may occur via different mechanisms. Our findings provide insights into the action mechanisms of propofol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA