Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 11: 51, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21429230

RESUMO

BACKGROUND: Brassinosteroids (BRs) are signaling molecules that play essential roles in the spatial regulation of plant growth and development. In contrast to other plant hormones BRs act locally, close to the sites of their synthesis, and thus homeostatic mechanisms must operate at the cellular level to equilibrate BR concentrations. Whilst it is recognized that levels of bioactive BRs are likely adjusted by controlling the relative rates of biosynthesis and by catabolism, few factors, which participate in these regulatory events, have as yet been identified. Previously we have shown that the UDP-glycosyltransferase UGT73C5 of Arabidopsis thaliana catalyzes 23-O-glucosylation of BRs and that glucosylation renders BRs inactive. This study identifies the closest homologue of UGT73C5, UGT73C6, as an enzyme that is also able to glucosylate BRs in planta. RESULTS: In a candidate gene approach, in which homologues of UGT73C5 were screened for their potential to induce BR deficiency when over-expressed in plants, UGT73C6 was identified as an enzyme that can glucosylate the BRs CS and BL at their 23-O-positions in planta. GUS reporter analysis indicates that UGT73C6 shows over-lapping, but also distinct expression patterns with UGT73C5 and YFP reporter data suggests that at the cellular level, both UGTs localize to the cytoplasm and to the nucleus. A liquid chromatography high-resolution mass spectrometry method for BR metabolite analysis was developed and applied to determine the kinetics of formation and the catabolic fate of BR-23-O-glucosides in wild type and UGT73C5 and UGT73C6 over-expression lines. This approach identified novel BR catabolites, which are considered to be BR-malonylglucosides, and provided first evidence indicating that glucosylation protects BRs from cellular removal. The physiological significance of BR glucosylation, and the possible role of UGT73C6 as a regulatory factor in this process are discussed in light of the results presented. CONCLUSION: The present study generates essential knowledge and molecular and biochemical tools, that will allow for the verification of a potential physiological role of UGT73C6 in BR glucosylation and will facilitate the investigation of the functional significance of BR glucoside formation in plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucosídeos/biossíntese , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Esteroides/biossíntese , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Expressão Gênica , Transporte Proteico
2.
Cell Cycle ; 17(18): 2268-2283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280956

RESUMO

CIZ1 promotes cyclin-dependent DNA replication and resides in sub-nuclear foci that are part of the protein nuclear matrix (NM), and in RNA assemblies that are enriched at the inactive X chromosome (Xi) in female cells. It is subjected to alternative splicing, with specific variants implicated in adult and pediatric cancers. CIZ1-F is characterized by a frame shift that results from splicing exons 8-12 leading to inclusion of a short alternative reading frame (ARF), excluding the previously characterized C-terminal NM anchor domain. Here, we apply a set of novel variant-selective molecular tools targeted to the ARF to profile the expression of CIZ1-F at both transcript and protein levels, with focus on its relationship with the RNA-dependent and -independent fractions of the NM. Unlike full-length CIZ1, CIZ1-F does not accumulate at Xi, though like full-length CIZ1 it does resist extraction with DNase. Notably, CIZ1-F is sensitive to RNase identifying it as part of the RNA-fraction of the NM. In quiescent cells CIZ1-F transcript expression is suppressed and CIZ1-F protein is excluded from the nucleus, with re-expression not observed until the second cell cycle after exit from quiescence. Importantly, CIZ1-F is over-expressed in common solid tumors including colon and breast, pronounced in early stage but not highly-proliferative late stage tumors. Moreover, expression was significantly higher in hormone receptor negative breast tumors than receptor positive tumors. Together these data show that CIZ1-F is expressed in proliferating cells in an unusual cell cycle-dependent manner, and suggest that it may have potential as a tumor biomarker.


Assuntos
Proteínas Nucleares/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Biomarcadores Tumorais/metabolismo , Núcleo Celular/metabolismo , Replicação do DNA , Éxons , Feminino , Fase G1 , Humanos , Células MCF-7 , Estadiamento de Neoplasias , Neoplasias/metabolismo , Neoplasias/patologia , Matriz Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Plant J ; 46(3): 492-502, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16623908

RESUMO

A glucosyltransferase (GT) of Arabidopsis, UGT71B6, recognizing the naturally occurring enantiomer of abscisic acid (ABA) in vitro, has been used to disturb ABA homeostasis in planta. Transgenic plants constitutively overexpressing UGT71B6 (71B6-OE) have been analysed for changes in ABA and the related ABA metabolites abscisic acid glucose ester (ABA-GE), phaseic acid (PA), dihydrophaseic acid (DPA), 7'-hydroxyABA and neo-phaseic acid. Overexpression of the GT led to massive accumulation of ABA-GE and reduced levels of the oxidative metabolites PA and DPA, but had marginal effect on levels of free ABA. The control of ABA homeostasis, as reflected in levels of the different metabolites, differed in the 71B6-OEs whether the plants were grown under standard conditions or subjected to wilt stress. The impact of increased glucosylation of ABA on ABA-related phenotypes has also been assessed. Increased glucosylation of ABA led to phenotypic changes in post-germinative growth. The use of two structural analogues of ABA, known to have biological activity but to differ in their capacity to act as substrates for 71B6 in vitro, confirmed that the phenotypic changes arose specifically from the increased glucosylation caused by overexpression of 71B6. The phenotype and profile of ABA and related metabolites in a knockout line of 71B6, relative to wild type, has been assessed during Arabidopsis development and following stress treatments. The lack of major changes in these parameters is discussed in the context of functional redundancy of the multigene family of GTs in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Glicosiltransferases/fisiologia , Ácido Abscísico/análogos & derivados , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ésteres , Glicosiltransferases/genética , Homeostase , Família Multigênica/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Água/metabolismo
4.
Biochem J ; 373(Pt 3): 987-92, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12741958

RESUMO

Caffeic acid is a phenylpropanoid playing an important role in the pathways leading to lignin synthesis and the production of a wide variety of secondary metabolites. The compound is also an antioxidant and has potential utility as a general protectant against free radicals. Three glucosylated forms of caffeic acid are known to exist: the 3- O - and 4- O -glucosides and the glucose ester. This study describes for the first time a glucosyltransferase [UDP-glucose:glucosyltransferase (UGT)] that is specific for the 3-hydroxyl, and not the 4-hydroxyl, position of caffeic acid. The UGT sequence of Arabidopsis, UGT71C1, has been expressed as a recombinant fusion protein in Escherichia coli, purified and assayed against a range of substrates in vitro. The assay confirmed that caffeic acid as the preferred substrate when compared with other hydroxycinnamates, although UGT71C1 also exhibited substantial activity towards flavonoid substrates, known to have structural features that can be recognized by many different UGTs. The expression of UGT71C1 in transgenic Arabidopsis was driven by the constitutive cauliflower mosaic virus 35 S (CaMV35S) promoter. Nine independent transgenic lines were taken to homozygosity and characterized by Northern-blot analysis, assay of enzyme activity in leaf extracts and HPLC analysis of the glucosides. The level of expression of UGT71C1 was enhanced considerably in several lines, leading to a higher level of the corresponding enzyme activity and a higher level of caffeoyl-3- O -glucoside. The data are discussed in the context of the utility of UGTs for natural product biotransformations.


Assuntos
Ácidos Cafeicos/metabolismo , Glucosiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Primers do DNA , Glicosilação , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Plantas Geneticamente Modificadas , Especificidade por Substrato
5.
J Biol Chem ; 279(46): 47822-32, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15342621

RESUMO

Cytokinins are plant hormones that can be glucosylated to form O-glucosides and N-glucosides. The glycoconjugates are inactive and are thought to play a role in homeostasis of the hormones. Although O-glucosyltransferases have been identified that recognize cytokinins, the enzymes involved in N-glucosylation have not been identified even though the process has been recognized for many years. This study utilizes a screening strategy in which 105 recombinant glycosyltransferases (UGTs) of Arabidopsis have been analyzed for catalytic activity toward the classical cytokinins: trans-zeatin, dihydrozeatin, N(6)-benzyladenine, N(6)-isopentenyladenine, and kinetin. Five UGTs were identified in the screen. UGT76C1 and UGT76C2 recognized all cytokinins and glucosylated the hormones at the N(7) and N(9) positions. UGT85A1, UGT73C5, and UGT73C1 recognized trans-zeatin and dihydrozeatin, which have an available hydroxyl group for glucosylation and formed the O-glucosides. The biochemical characteristics of the N-glucosyltransferases were analyzed, and highly effective inhibitors of their activities were identified. Constitutive overexpression of UGT76C1 in transgenic Arabidopsis confirmed that the recombinant enzyme functioned in vivo to glucosylate cytokinin applied to the plant. The role of the N-glucosyltransferases in cytokinin metabolism is discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Citocininas/química , Glucosídeos/química , Glucosiltransferases/classificação , Glucosiltransferases/genética , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zeatina/química , Zeatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA