Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; : e202400680, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317170

RESUMO

An increasingly effective strategy to identify synthetically useful enzymes is to sample the diversity already present in Nature. Here, we construct and assay a panel of phylogenetically diverse aromatic prenyltransferases (PTs). These enzymes catalyze a variety of C-C bond forming reactions in natural product biosynthesis and are emerging as tools for synthetic chemistry and biology. Homolog screening was further empowered through substrate-multiplexed screening, which provides direct information on enzyme specificity. We perform a head-to-head assessment of the model members of the PT family and further identify homologs with divergent sequences that rival these superb enzymes. This effort revealed the first bacterial O-Tyr PT and, together, provide valuable benchmarking for future synthetic applications of PTs.

2.
Angew Chem Int Ed Engl ; 62(43): e202311189, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37625129

RESUMO

Non-canonical amino acids (ncAAs) are useful synthons for the development of new medicines, materials, and probes for bioactivity. Recently, enzyme engineering has been leveraged to produce a suite of highly active enzymes for the synthesis of ß-substituted amino acids. However, there are few examples of biocatalytic N-substitution reactions to make α,ß-diamino acids. In this study, we used directed evolution to engineer the ß-subunit of tryptophan synthase, TrpB, for improved activity with diverse amine nucleophiles. Mechanistic analysis shows that high yields are hindered by product re-entry into the catalytic cycle and subsequent decomposition. Additional equivalents of l-serine can inhibit product reentry through kinetic competition, facilitating preparative scale synthesis. We show ß-substitution with a dozen aryl amine nucleophiles, including demonstration on a gram scale. These transformations yield an underexplored class of amino acids that can serve as unique building blocks for chemical biology and medicinal chemistry.


Assuntos
Aminoácidos , Serina , Aminoácidos/química , Biocatálise , Catálise , Aminas
3.
Nat Commun ; 13(1): 5242, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068220

RESUMO

Enzymes with high activity are readily produced through protein engineering, but intentionally and efficiently engineering enzymes for an expanded substrate scope is a contemporary challenge. One approach to address this challenge is Substrate Multiplexed Screening (SUMS), where enzyme activity is measured on competing substrates. SUMS has long been used to rigorously quantitate native enzyme specificity, primarily for in vivo settings. SUMS has more recently found sporadic use as a protein engineering approach but has not been widely adopted by the field, despite its potential utility. Here, we develop principles of how to design and interpret SUMS assays to guide protein engineering. This rich information enables improving activity with multiple substrates simultaneously, identifies enzyme variants with altered scope, and indicates potential mutational hot-spots as sites for further engineering. These advances leverage common laboratory equipment and represent a highly accessible and customizable method for enzyme engineering.


Assuntos
Engenharia de Proteínas , Biocatálise , Engenharia de Proteínas/métodos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA