Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hear Res ; 426: 108597, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35963812

RESUMO

OBJECTIVES: The objectives of this study were to assess the effects of cochlear implant (CI) biomaterials on the function of macrophages and fibroblasts, two key mediators of the foreign body response (FBR) and to determine how these materials influence fibrous tissue growth and new bone formation within the cochlea. METHODS: Macrophages and fibroblasts were cultured on polydimethylsiloxane (PDMS) and platinum substrates and human CI electrodes in vitro. Cell count, cell proliferation, cytokine production, and cell adhesion were measured. CI electrodes were implanted into murine cochleae for three weeks without electrical stimulation. Implanted cochleae were harvested for 3D X-ray microscopy with the CI left in-situ. The location of new bone growth within the scala tympani (ST) with reference to different portions of the implant (PDMS vs platinum) was quantified. RESULTS: Cell counts of macrophages and fibroblasts were significantly higher on platinum substrates and platinum contacts of CI electrodes. Fibroblast proliferation was greater on platinum relative to PDMS, and cells grown on platinum formed more/larger focal adhesions. 3D X-ray microscopy showed neo-ossification in the peri­implant areas of the ST. Volumetric quantification of neo-ossification showed a trend toward greater bone formation adjacent to the platinum electrodes compared to areas opposite or away from the platinum electrode bearing surfaces. CONCLUSIONS: Fibrotic reactions are biomaterial specific, as demonstrated by the differences in cell adhesion, proliferation, and fibrosis on platinum and PDMS. The inflammatory reaction to platinum contacts on CI electrodes likely contributes to fibrosis to a greater degree than PDMS, and platinum contacts may influence the deposition of new bone, as demonstrated in the in vivo data. This information can potentially be used to influence the design of future generations of neural prostheses.


Assuntos
Implantes Cocleares , Corpos Estranhos , Humanos , Animais , Camundongos , Platina , Cóclea , Fibrose
2.
Hear Res ; 426: 108510, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35527124

RESUMO

BACKGROUND: Cochlear implantation is an effective auditory rehabilitation strategy for those with profound hearing loss, including those with residual low frequency hearing through use of hybrid cochlear implantation techniques. Post-mortem studies demonstrate the nearly ubiquitous presence of intracochlear fibrosis and neo-ossification following cochlear implantation. Current evidence suggests post-implantation intracochlear fibrosis is associated with delayed loss of residual acoustic hearing in hybrid cochlear implant (CI) recipients and may also negatively influence outcomes in traditional CI recipients. This study examined the contributions of surgical trauma, foreign body response and electric stimulation to intracochlear fibrosis and the innate immune response to cochlear implantation and the hierarchy of these contributions. METHODS: Normal hearing CX3CR1+/GFP mice underwent either round window opening (sham), acute CI insertion or chronic CI insertion with no, low- or high-level electric stimulation. Electric stimulation levels were based on neural response telemetry (NRT), beginning post-operative day 7 for 5 h per day. Subjects (n=3 per timepoint) were sacrificed at 4 h, 1,4,7,8,11,14 and 21 days. An unoperated group (n=3) served as controls. Cochleae were harvested at each time-point and prepared for immunohistochemistry with confocal imaging. The images were analyzed to obtain CX3CR1+ macrophage cell number and density in the lateral wall (LW), scala tympani (ST) and Rosenthal's canal (RC). RESULTS: A ST peri-implant cellular infiltrate and fibrosis occurred exclusively in the chronically implanted groups starting on day 7 with a concurrent infiltration of CX3CR1+ macrophages not seen in the other groups. CX3CR1+ macrophage infiltration was seen in the LW and RC in all experimental groups within the first week, being most prominent in the 3 chronically implanted groups during the second and third week. CONCLUSIONS: The cochlear immune response was most prominent in the presence of chronic cochlear implantation, regardless of electric stimulation level. Further, the development of intracochlear ST fibrosis was dependent on the presence of the indwelling CI foreign body. An innate immune response was evoked by surgical trauma alone (sham and acute CI groups) to a lesser degree. These data suggest that cochlear inflammation and intrascalar fibrosis after cochlear implantation are largely dependent on the presence of a chronic indwelling foreign body and are not critically dependent on electrical stimulation. Also, these data support a role for surgical trauma in inciting the initial innate immune response.


Assuntos
Implante Coclear , Implantes Cocleares , Corpos Estranhos , Camundongos , Animais , Implante Coclear/efeitos adversos , Implante Coclear/métodos , Cóclea/patologia , Estimulação Elétrica , Modelos Animais de Doenças , Fibrose , Macrófagos , Corpos Estranhos/patologia , Corpos Estranhos/cirurgia , Receptor 1 de Quimiocina CX3C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA