RESUMO
The isolation and purification of protactinium from uranium materials is essential for 231Pa-235U radiochronometry, but separating Pa from uranium-niobium alloys, a common material in the nuclear fuel cycle, is challenging due to the chemical similarity of Pa and Nb. Here we present three resin chromatography separation techniques for isolating Pa from U and Nb which were independently developed by three different laboratories through ad hoc adaptations of standard operating procedures. Our results underscore the need for and value of purification methods suitable for a diversity of uranium-based materials to ensure the operational readiness of nuclear forensics laboratories. Supplementary Information: The online version contains supplementary material available at 10.1007/s10967-023-08928-y.
RESUMO
Separation of the minor actinides (Am/Cm) from spent nuclear fuel post-PUREX process is expected to play a key part in new reprocessing methodologies. To date, a number of selective americium extractants from the BTPhen ligand family have been identified. In this investigation, we synthesise 24 novel BTPhens with additional functionality to determine the effects on solubilities and americium extraction capabilities. The data obtained will allow for tuning of steric/electronic properties of BTPhens in order to assist future extractant design.