Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 59(3): 359-71, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26190262

RESUMO

Integrity of human skin is endangered by exposure to UV irradiation and chemical stressors, which can provoke a toxic production of reactive oxygen species (ROS) and oxidative damage. Since oxidation of proteins and metabolites occurs virtually instantaneously, immediate cellular countermeasures are pivotal to mitigate the negative implications of acute oxidative stress. We investigated the short-term metabolic response in human skin fibroblasts and keratinocytes to H2O2 and UV exposure. In time-resolved metabolomics experiments, we observed that within seconds after stress induction, glucose catabolism is routed to the oxidative pentose phosphate pathway (PPP) and nucleotide synthesis independent of previously postulated blocks in glycolysis (i.e., of GAPDH or PKM2). Through ultra-short (13)C labeling experiments, we provide evidence for multiple cycling of carbon backbones in the oxidative PPP, potentially maximizing NADPH reduction. The identified metabolic rerouting in oxidative and non-oxidative PPP has important physiological roles in stabilization of the redox balance and ROS clearance.


Assuntos
Proteínas de Transporte/metabolismo , Peróxido de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Proteínas de Membrana/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/efeitos da radiação , Hormônios Tireóideos/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Recém-Nascido , Queratinócitos/citologia , Queratinócitos/metabolismo , Metabolômica/métodos , NADP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
2.
BMC Genomics ; 18(1): 169, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28201987

RESUMO

BACKGROUND: Aging human skin undergoes significant morphological and functional changes such as wrinkle formation, reduced wound healing capacity, and altered epidermal barrier function. Besides known age-related alterations like DNA-methylation changes, metabolic adaptations have been recently linked to impaired skin function in elder humans. Understanding of these metabolic adaptations in aged skin is of special interest to devise topical treatments that potentially reverse or alleviate age-dependent skin deterioration and the occurrence of skin disorders. RESULTS: We investigated the global metabolic adaptions in human skin during aging with a combined transcriptomic and metabolomic approach applied to epidermal tissue samples of young and old human volunteers. Our analysis confirmed known age-dependent metabolic alterations, e.g. reduction of coenzyme Q10 levels, and also revealed novel age effects that are seemingly important for skin maintenance. Integration of donor-matched transcriptome and metabolome data highlighted transcriptionally-driven alterations of metabolism during aging such as altered activity in upper glycolysis and glycerolipid biosynthesis or decreased protein and polyamine biosynthesis. Together, we identified several age-dependent metabolic alterations that might affect cellular signaling, epidermal barrier function, and skin structure and morphology. CONCLUSIONS: Our study provides a global resource on the metabolic adaptations and its transcriptional regulation during aging of human skin. Thus, it represents a first step towards an understanding of the impact of metabolism on impaired skin function in aged humans and therefore will potentially lead to improved treatments of age related skin disorders.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Epiderme/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Adaptação Fisiológica/genética , Adulto , Idoso , Epiderme/fisiologia , Feminino , Glicolipídeos/biossíntese , Glicólise/genética , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Poliaminas/metabolismo , Adulto Jovem
3.
Nutrients ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686821

RESUMO

Due to multifactorial reasons, such as decreased thirst and decreased total body water, elderly patients are vulnerable to dehydration. The study aims to investigate whether moderate dehydration or hyperhydration affects the blood proteome. Blood samples, medication, and bioelectrical impedance analysis (BIA) details were collected from 131 geriatric patients (77 women and 54 men aged 81.1 ± 7.2 years). Based on an evaluation by Bioelectrical Impedance Vector Analyses (BIVAs) of this cohort, for each hydration status (dehydrated, hyperhydrated, and control), five appropriate blood plasma samples for both males and females were analyzed by liquid chromatography-mass spectrometry (LC-MS). Overall, 262 proteins for female patients and 293 proteins for male patients could be quantified. A total of 38 proteins had significantly different abundance, showing that hydration status does indeed affect the plasma proteome. Protein enrichment analysis of the affected proteins revealed "Wound Healing" and "Keratinization" as the two main biological processes being dysregulated. Proteins involved in clot formation are especially affected by hydration status.


Assuntos
Desidratação , Proteoma , Idoso , Humanos , Feminino , Masculino , Coagulação Sanguínea , Plasma , Cicatrização
4.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326410

RESUMO

The human skin and in particular its outermost layer, the epidermis, protects the body from potentially harmful substances, radiation as well as excessive water loss. However, the interference between the various stress responses of the epidermal keratinocytes, which often occur simultaneously, is largely unknown. The focus of this study was to investigate the interference between osmotic stress and DNA damage response. In addition to revealing the already well-described regulation of diverse gene sets, for example, cellular processes such as transcription, translation, and metabolic pathways (e.g., the KEGG citrate cycle and Reactome G2/M checkpoints), gene expression analysis of osmotically stressed keratinocytes revealed an influence on the transcription of genes also related to UV-induced DNA damage response. A gene network regulating the H2AX phosphorylation was identified to be regulated by osmotic stress. To analyze and test the interference between osmotic stress and DNA damage response, which can be triggered by UV stress on the one hand and oxidative stress on the other, in more detail, primary human keratinocytes were cultured under osmotic stress conditions and subsequently exposed to UV light and H2O2, respectively. γH2AX measurements revealed lower γH2AX levels in cells previously cultured under osmotic stress conditions.


Assuntos
Dano ao DNA , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/metabolismo , Queratinócitos/metabolismo , Pressão Osmótica , Fosforilação
5.
Nutrients ; 13(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199738

RESUMO

Due to multifactorial reasons, such as decreased thirst and decreased total body water, elderly patients are vulnerable to dehydration. Mild cognitive impairment (MCI) or dementia increase the risk of dehydration and, in turn, dehydration decreases cognitive performance. The study aims to identify and assess differences in hydration status, taking into account patients' drug treatment and diseases, using bioelectrical impedance vector analysis (BIVA), thereby revealing unfavorable aspects of prognosis. 447 geriatric patients (241 women, 206 men) including information on medication and bioelectrical impedance analysis (BIA) were investigated, which allowed studying the association between 40 drugs and the hydration status. First, patients were divided into disease groups. Renal disease and diuretic treatment were significantly different in both sexes, whereas cardiovascular patients differed exclusively for females. Next, drug enrichment was examined in either hyperhydrated or dehydrated patients. Simvastatin, candesartan, bisoprolol, amlodipine, olmesartan, furosemide, torasemide, allopurinol, mirtazapine, pantoprazole, cholecalciferol, and resveratrol showed enrichment depending on hydration status. This study demonstrated that patients can be differentiated and stratified by BIVA, taking into account medication and disease associated with hydration status. Although patients diagnosed with MCI and therefore treated with resveratrol, BIVA still showed evaluated dehydration. This is unfavorable in terms of prognosis and requires special attention.


Assuntos
Desidratação/prevenção & controle , Estado de Hidratação do Organismo/fisiologia , Preparações Farmacêuticas , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Disfunção Cognitiva , Feminino , Geriatria , Humanos , Masculino , Avaliação Nutricional , Estado Nutricional
6.
Biofactors ; 41(6): 383-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648450

RESUMO

Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity.


Assuntos
Antioxidantes/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Pele/efeitos dos fármacos , Ubiquinona/análogos & derivados , Administração Tópica , Antioxidantes/metabolismo , Linhagem Celular , Suplementos Nutricionais , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pele/metabolismo , Pele/patologia , Ubiquinona/administração & dosagem , Ubiquinona/metabolismo
7.
Methods Mol Biol ; 961: 193-200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23325644

RESUMO

The terminal differentiation of epidermal keratinocytes requires transcriptional and posttranscriptional regulatory mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs that play key roles during differentiation processes by regulating protein expression at the posttranscriptional level. Several studies have investigated miRNA expression in murine or human skin using northern blotting, microarrays, deep sequencing, or real-time PCR (Andl et al., Curr Biol 16:1041-1049, 2006; Hildebrand et al., J Invest Dermatol 131:20-29, 2011; Sonkoly et al., PLoS One 2:e610, 2007; Yi et al., Nat Genet 38:356-362, 2006; Yi et al., Proc Natl Acad Sci U S A 106:498-502, 2009). Conventional techniques such as northern blotting and microarrays often fail to detect miRNAs of low abundance, while the per-sample cost of deep sequencing approaches is still prohibitive in many cases. In contrast, stem loop primer-based real-time PCR methods for simultaneous detection of up to 380 miRNAs allow fast, specific, and reliable miRNA profiling. These methods are suitable for in vitro material, but also for samples which are of limited availability, such as epidermal stem cells isolated from human skin biopsies. Here, we describe a general real-time PCR method for miRNA profiling using isolated epidermal stem cells, transiently amplifying cells and terminally differentiated keratinocytes of human skin.


Assuntos
Perfilação da Expressão Gênica/métodos , Queratinócitos/citologia , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Diferenciação Celular , Separação Celular/métodos , Células Cultivadas , Células Epidérmicas , Humanos , Queratinócitos/metabolismo , MicroRNAs/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pele/citologia
8.
J Invest Dermatol ; 131(1): 20-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20827281

RESUMO

Here, we report a comprehensive investigation of changes in microRNA (miRNA) expression profiles on human keratinocyte (HK) differentiation in vitro and in vivo. We have monitored expression patterns of 377 miRNAs during calcium-induced differentiation of primary HKs, and have compared these patterns with miRNA expression profiles of epidermal stem cells, transient amplifying cells, and terminally differentiated HKs from human skin. Apart from the previously described miR-203, we found an additional nine miRNAs (miR-23b, miR-95, miR-210, miR-224, miR-26a, miR-200a, miR-27b, miR-328, and miR-376a) that are associated with HK differentiation in vitro and in vivo. In situ hybridization experiments confirmed miR-23b as a marker of HK differentiation in vivo. Additionally, gene ontology analysis and functional validation of predicted miRNA targets using 3'-untranslated region-luciferase assays suggest that multiple miRNAs that are upregulated on HK differentiation cooperate to regulate gene expression during skin development. Our results thus provide the basis for further analysis of miRNA functions during epidermal differentiation.


Assuntos
Epiderme , Marcadores Genéticos , Queratinócitos/citologia , Queratinócitos/fisiologia , MicroRNAs/metabolismo , Biópsia , Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo/genética , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Epiderme/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro , Receptor de Endotelina A/genética , Transativadores/genética , Regulação para Cima/genética
10.
J Biol Chem ; 281(38): 27765-72, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16844692

RESUMO

O-Glycans of the human gastric mucosa show antimicrobial activity against the pathogenic bacterium Helicobacter pylori by inhibiting the bacterial cholesterol-alpha-glucosyltransferase (Kawakubo, M., Ito, Y., Okimura, Y., Kobayashi, M., Sakura, K., Kasama, S., Fukuda, M. N., Fukuda, M., Katsuyama, T., and Nakayama, J. (2004) Science 305, 1003-1006). This enzyme catalyzes the first step in the biosynthesis of four unusual glycolipids: cholesteryl-alpha-glucoside, cholesteryl-6'-O-acyl-alpha-glucoside, cholesteryl-6'-O-phosphatidyl-alpha-glucoside, and cholesteryl-6'-O-lysophosphatidyl-alpha-glucoside. Here we report the identification, cloning, and functional characterization of the cholesterol-alpha-glucosyltransferase from H. pylori. The hypothetical protein HP0421 from H. pylori belongs to the glycosyltransferase family 4 and shows similarities to some bacterial diacylglycerol-alpha-glucosyltransferases. Deletion of the HP0421 gene in H. pylori resulted in the loss of cholesteryl-alpha-glucoside and all of its three derivatives. Heterologous expression of HP0421 in the yeast Pichia pastoris led to the biosynthesis of ergosteryl-alpha-glucoside as demonstrated by purification of the lipid and subsequent structural analysis by nuclear magnetic resonance spectroscopy and mass spectrometry. In vitro enzyme assays were performed with cell-free homogenates obtained from cells of H. pylori or from transgenic Escherichia coli, which express HP0421. These assays revealed that the enzyme represents a membrane-bound, UDP-glucose-dependent cholesterol-alpha-glucosyltransferase.


Assuntos
Colesterol/análogos & derivados , Glucosiltransferases/genética , Helicobacter pylori/enzimologia , Receptores CXCR4/genética , Sequência de Aminoácidos , Colesterol/biossíntese , Clonagem Molecular , Ergosterol/metabolismo , Glucosiltransferases/fisiologia , Helicobacter pylori/genética , Dados de Sequência Molecular , Receptores CXCR4/metabolismo , Uridina Difosfato Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA