Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Pharm ; 21(1): 313-324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054599

RESUMO

Transient permeation enhancers (PEs) have been widely used to improve the oral absorption of macromolecules. During pharmaceutical development, the correct selection of the macromolecule, PE, and the combination needs to be made to maximize oral bioavailability and ensure successful clinical development. Various in vitro and in vivo methods have been investigated to optimize this selection. In vitro methods are generally preferred by the pharmaceutical industry to reduce the use of animals according to the "replacement, reduction, and refinement" principle commonly termed "3Rs," and in vitro methods typically have a higher throughput. This paper compares two in vitro methods that are commonly used within the pharmaceutical industry, being Caco-2 and an Ussing chamber, to two in vivo models, being in situ intestinal instillation to rats and in vivo administration via an endoscope to pigs. All studies use solution formulation of sodium caprate, which has been widely used as a PE, and two macromolecules, being FITC-dextran 4000 Da and MEDI7219, a GLP-1 receptor agonist peptide. The paper shares our experiences of using these models and the challenges with the in vitro models in mimicking the processes occurring in vivo. The paper highlights the need to consider these differences when translating data generated using these in vitro models for evaluating macromolecules, PE, and combinations thereof for enabling oral delivery.


Assuntos
Absorção Intestinal , Mucosa Intestinal , Humanos , Ratos , Animais , Suínos , Mucosa Intestinal/metabolismo , Células CACO-2 , Intestinos , Administração Oral , Permeabilidade
2.
Drug Metab Dispos ; 51(11): 1436-1450, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37591731

RESUMO

Therapeutic peptides (TPeps) have expanded from the initial endogenous peptides to complex modified peptides through medicinal chemistry efforts for almost a century. Different from small molecules and large proteins, the diverse submodalities of TPeps have distinct structures and carry different absorption, distribution, metabolism, and excretion (ADME) properties. There is no distinct regulatory guidance for the industry on conducting ADME studies (what, how, and when) for TPeps. Therefore, the Peptide ADME Working Group sponsored by the Translational and ADME Sciences Leadership Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) was formed with the goal to develop a white paper focusing on metabolism and excretion studies to support discovery and development of TPeps. In this paper, the key learnings from an IQ industry survey and U.S. Food and Drug Administration/European Medicines Agency submission documents of TPeps approved between 2011 and 2022 are outlined in detail. In addition, a comprehensive assessment of in vitro and in vivo metabolism and excretion studies, mitigation strategies for TPep metabolism, analytical tools to conduct studies, regulatory status, and Metabolites in Safety Testing considerations are provided. Finally, an industry recommendation on conducting metabolism and excretion studies is proposed for regulatory filing of TPeps. SIGNIFICANCE STATEMENT: This white paper presents current industry practices for metabolism and excretion studies of therapeutic peptides based on an industry survey, regulatory submission documents, and expert opinions from the participants in the Peptide Absorption, Distribution, Metabolism, and Excretion Working Group of the International Consortium for Innovation and Quality in Pharmaceutical Development. The group also provides recommendations on the Metabolites in Safety Testing considerations and metabolism and excretion studies for regulatory filing of therapeutic peptides.


Assuntos
Desenvolvimento de Medicamentos , Indústria Farmacêutica , Humanos , Peptídeos
3.
J Pharmacol Exp Ther ; 378(2): 108-123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074714

RESUMO

Verinurad is a selective uric acid transporter 1 (URAT1) inhibitor in development for the treatment of chronic kidney disease and heart failure. In humans, two major acyl glucuronide metabolites have been identified: direct glucuronide M1 and N-oxide glucuronide M8. Using in vitro systems recommended by regulatory agencies, we evaluated the interactions of verinurad, M1, and M8 with major drug-metabolizing enzymes and transporters and the potential for clinically relevant drug-drug interactions (DDIs). The IC50 for inhibition of CYP2C8, CYP2C9, and CYP3A4/5 for verinurad was ≥14.5 µM, and maximum free plasma concentration (Iu,max)/IC50 was <0.02 at the anticipated therapeutic Cmax and therefore not considered a DDI risk. Verinurad was not an inducer of CYP1A2, CYP2B6, or CYP3A4/5. Verinurad was identified as a substrate of the hepatic uptake transporter organic anion-transporting polypeptide (OATP) 1B3. Since verinurad hepatic uptake involved both active and passive transport, there is a low risk of clinically relevant DDIs with OATP, and further study is warranted. Verinurad was a substrate of the efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), and renal transporter organic anion transporter 1 (OAT1), although it is not considered a DDI risk in vivo because of dose-proportional pharmacokinetics (P-gp and BCRP) and limited renal excretion of verinurad (OAT1). M1 and M8 were substrates of multidrug resistance-associated protein (MRP) 2 and MRP4 and inhibitors of MRP2. Apart from verinurad being a substrate of OATP1B3 in vitro, the potential for clinically relevant DDIs involving verinurad and its metabolites as victims or perpetrators of metabolizing enzymes or drug transporters is considered low. SIGNIFICANCE STATEMENT: Drug transporters and metabolizing enzymes have an important role in the absorption and disposition of a drug and its metabolites. Using in vitro systems recommended by regulatory agencies, we determined that, apart from verinurad being a substrate of organic anion-transporting polypeptide 1B3, the potential for clinically relevant drug-drug interactions involving verinurad and its metabolites M1 and M8 as victims or perpetrators of metabolizing enzymes or drug transporters is considered low.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Transporte Biológico , Interações Medicamentosas , Humanos , Naftalenos , Propionatos , Piridinas
4.
Nat Chem Biol ; 12(12): 1065-1074, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27748751

RESUMO

Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.


Assuntos
Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Células CACO-2 , Humanos , Estrutura Molecular , Permeabilidade , Estereoisomerismo , Relação Estrutura-Atividade
5.
Mol Pharm ; 14(5): 1601-1609, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28329446

RESUMO

In vitro permeability data have a central place in absorption risk assessments in drug discovery and development. For compounds where active efflux impacts permeability in vitro, the inherent passive membrane permeability ("intrinsic permeability") gives a concentration-independent measure of the compound's permeability. This work describes the validation of an in vitro intrinsic permeability assay and application of the data in a predictive in silico model. Apparent intrinsic permeability (Papp) across Caco-2 cell monolayers is determined in the presence of an optimized cocktail of chemical inhibitors toward the three major efflux transporters ABCB1, ABCC2, and ABCG2. The intrinsic Papp value gives an estimate of passive permeability, which is independent of transporter expression levels and not limited by solubility or cell toxicity. An in silico model has been established to predict the Caco-2 intrinsic permeability and shown to consistently identify highly permeable compounds. The new intrinsic permeability assay is useful for early absorption estimates and suitable for absorption risk assessment in DMPK and pharmaceutical development.


Assuntos
Desenho de Fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico Ativo/fisiologia , Células CACO-2 , Descoberta de Drogas , Humanos , Absorção Intestinal/fisiologia , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
6.
Br J Clin Pharmacol ; 83(9): 2008-2014, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432691

RESUMO

AIM: Tenapanor (RDX5791/AZD1722), an inhibitor of gastrointestinal Na+ /H+ exchanger NHE3, is being evaluated for the treatment of patients with constipation-predominant irritable bowel syndrome and the treatment of hyperphosphataemia in patients with chronic kidney disease on dialysis. By reducing intestinal H+ secretion, inhibition of NHE3 by tenapanor could indirectly affect H+ -coupled transporter activity, leading to drug-drug interactions. We investigated the effect of tenapanor on the activity of the H+ -coupled peptide transporter PepT1 via assessment of the pharmacokinetics of cefadroxil - a compound transported by PepT1 - in healthy volunteers. METHODS: In this open-label, two-period crossover, phase 1 study (NCT02140281), 28 volunteers received in random order: a single dose of cefadroxil 500 mg for 1 day; and tenapanor 15 mg twice daily over 4 days followed by single doses of both cefadroxil 500 mg and tenapanor 15 mg on day 5. There was a 4-day washout between treatment periods. RESULTS: Cefadroxil exposure was similar when administered alone or in combination with tenapanor {geometric least-squares mean ratios [(cefadroxil + tenapanor)/cefadroxil] (90% confidence interval): area under the concentration-time curve 93.3 (90.6-96.0)%; maximum concentration in plasma 95.9 (89.8-103)%}. Tenapanor treatment caused a softening of stool consistency and an increase in stool frequency, consistent with its expected pharmacodynamic effect. No safety concerns were identified and tenapanor was not detected in plasma. CONCLUSIONS: These results suggest that tenapanor 15 mg twice daily does not have a clinically relevant impact on the activity of the H+ -coupled transporter PepT1 in humans. This may guide future research on drug-drug interactions involving NHE3 inhibitors.


Assuntos
Cefadroxila/farmacocinética , Interações Medicamentosas , Isoquinolinas/efeitos adversos , Transportador 1 de Peptídeos/antagonistas & inibidores , Sulfonamidas/efeitos adversos , Adulto , Antibacterianos/sangue , Antibacterianos/farmacocinética , Cefadroxila/sangue , Estudos Cross-Over , Quimioterapia Combinada/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Laxantes/efeitos adversos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Pflugers Arch ; 465(12): 1701-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23812163

RESUMO

Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 µM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 µM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 µM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.


Assuntos
Acroleína/farmacologia , Poliaminas Biogênicas/farmacologia , Cátions/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Toxinas Biológicas/farmacologia , Uremia/fisiopatologia , Linhagem Celular , Guanidinas/farmacologia , Humanos , Túbulos Renais Proximais/metabolismo , Transportador 2 de Cátion Orgânico , Compostos de Piridínio
9.
Drug Metab Dispos ; 41(12): 2033-46, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23918667

RESUMO

A growing awareness of the risks associated with extensive intestinal metabolism has triggered an interest in developing robust methods for its quantitative assessment. This study explored the utility of intestinal S9 fractions, human liver microsomes, and recombinant cytochromes P450 to quantify CYP3A-mediated intestinal extraction in humans for a selection of marketed drugs that are predominantly metabolized by CYP3A4. A simple competing rates model is used to estimate the fraction of drug escaping gut wall metabolism (fg) from in vitro intrinsic clearance in humans. The fg values extrapolated from the three in vitro systems used in this study, together with literature-derived fg from human intestinal microsomes, were validated against fg extracted from human in vivo pharmacokinetic (PK) profiles using a generic whole-body physiologically-based pharmacokinetic (PBPK) model. The utility of the rat as a model for human CYP3A-mediated intestinal metabolism was also evaluated. Human fg from PBPK compares well with that from the grapefruit juice method, justifying its use for the evaluation of human in vitro systems. Predictive performance of all human in vitro systems was comparable [root mean square error (RMSE) = 0.22-0.27; n = 10]. Rat fg derived from in vivo PK profiles using PBPK has the lowest RMSE (0.19; n = 11) for the prediction of human fg for the selected compounds, most of which have a fraction absorbed close to 1. On the basis of these evaluations, the combined use of fg from human in vitro systems and rats is recommended for the estimation of CYP3A4-mediated intestinal metabolism in lead optimization and preclinical development phases.


Assuntos
Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Citocromo P-450 CYP3A/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Masculino , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
10.
Mol Pharm ; 10(12): 4443-51, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24102095

RESUMO

Uptake transporters may act to elevate the intrahepatic exposure of drugs, impacting the route and rate of elimination, as well as the drug-drug interaction potential. We have here extended the assessment of metabolic drug stability in a standard human hepatocyte incubation to allow for elucidation of the distribution-metabolism interplay established for substrates of drug transporters. Cellular concentration-time profiles were obtained from incubations of eight known OATP substrates at 1 µM, each for two different 10-donor batches of suspended cryopreserved human hepatocytes. The kinetic data sets were analyzed using a mechanistic mathematical model that allowed for separate estimation of active uptake, bidirectional diffusion, metabolism and nonspecific extracellular and intracellular binding. The range of intrinsic clearances attributed to active uptake, diffusion and metabolism of the test set spanned more than 2 orders of magnitude each, with median values of 18, 5.3, and 0.5 µL/min/10(6) cells, respectively. This is to be compared with the values for the apparent clearance from the incubations, which only spanned 1 order of magnitude with a median of 2.6 µL/min/10(6) cells. The parameter estimates of the two pooled 10-donor hepatocyte batches investigated displayed only small differences in contrast to the variability associated with use of cells from individual donors reported in the literature. The active contribution to the total cellular uptake ranged from 55% (glyburide) to 96% (rosuvastatin), with an unbound intra-to-extracellular concentration ratio at steady state of 2.1 and 17, respectively. Principal component analysis showed that the parameter estimates of the investigated compounds were largely influenced by lipophilicity. Active cellular uptake in hepatocytes was furthermore correlated to pure OATP1B1-mediated uptake as measured in a transfected cell system. The presented approach enables the assessment of the key pathways regulating hepatic disposition of transporter and enzyme substrates from one single, reproducible and generally accessible human in vitro system.


Assuntos
Hepatócitos/metabolismo , Taxa de Depuração Metabólica/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Distribuição Tecidual/fisiologia , Transporte Biológico/fisiologia , Criopreservação , Estabilidade de Medicamentos , Fluorbenzenos/metabolismo , Glibureto/metabolismo , Células HEK293 , Humanos , Cinética , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Análise de Componente Principal/métodos , Pirimidinas/metabolismo , Rosuvastatina Cálcica , Sulfonamidas/metabolismo
11.
Clin Pharmacol Ther ; 113(6): 1199-1216, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36633114

RESUMO

Drug-drug interaction (DDI) assessments are well defined in health authority guidelines for small molecule drugs, and US Food and Drug Administration (FDA) draft guidance is now available for therapeutic proteins. However, there are currently no regulatory guidelines outlining DDI assessments for therapeutic peptides, which poses significant uncertainty and challenges during drug development for this heterogenous class of molecules. A cross-industry peptide DDI working group consisting of experts from 10 leading companies was formed under the sponsorship of the European Federation of Pharmaceutical Industries and Associations. We aimed to capture the range of DDI studies undertaken for peptide drugs by (i) anonymously surveying relevant companies involved in peptide drug development to better understand DDI study type/timing currently performed and (ii) compiling a database containing in vitro / clinical DDI data from submission packages for recently approved peptide drugs. Our analyses highlight significant gaps and uncertainty in the field. For example, the reported timing of in vitro peptide DDI studies, if performed, vary substantially across responding companies from early research to phase III. Nearly all in vitro cytochrome P450 / transporter inhibition studies reported in the survey were negative. For the few positive hits reported, no clinical follow-up studies were performed, questioning the clinical relevance of these findings. Furthermore, available submission packages reveal DDI likelihood is low for peptides >2 kDa, making it reasonable to adopt a risk-based approach during drug development for larger peptides. By benchmarking the landscape of peptide DDI activities across the industry, we set the stage for future discussions with health authorities on harmonizing peptide DDI approaches.


Assuntos
Sistema Enzimático do Citocromo P-450 , Peptídeos , Humanos , Preparações Farmacêuticas/metabolismo , Interações Medicamentosas , Sistema Enzimático do Citocromo P-450/metabolismo , Indústria Farmacêutica
12.
Drug Metab Dispos ; 40(11): 2054-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22851615

RESUMO

The hepatic SV40 large T-antigen immortalized human liver epithelial (THLE) cell line and sublines transfected with cytochromes P450 (P450s) are increasingly being used for evaluation of potential drug-induced liver injury. So far, the available information on transporter and enzyme expression in these transfected cell systems is scattered. The purpose of this study was to characterize THLE cell lines with respect to transporter and enzyme expression. The mRNA expression of 96 typical drug absorption, distribution, metabolism and excretion genes, which encode a selection of transporters, phase I and II drug-metabolizing enzymes, and nuclear hormone receptors, was investigated in five THLE cell lines transfected with individual human P450s and in mock-transfected THLE-null cells using real-time polymerase chain reaction. The majority of the analyzed genes was either absent or expressed at low levels in the THLE-null and THLE-P450 cells, apart from housekeeping genes and the individual transfected P450s. Enzyme activity measurements provided confirmatory functional data for CYP2C9 and CYP3A4. Comparison with gene expression in human liver revealed an overall much lower gene expression in the THLE cell lines. The low levels of expression of a broad range of P450 genes in the THLE cell lines highlight the value of studies undertaken with P450-expressing cell lines for investigation of mechanisms of P450 metabolite-mediated hepatotoxicity. However, when attempting to translate between data obtained in THLE cell lines in vitro and functional consequences in vivo, it is important to take account of their limited expression of genes encoding many other drug-metabolizing enzymes and hepatic transporters.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/citologia , Fígado/enzimologia , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Expressão Gênica , Humanos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
Drug Metab Dispos ; 39(12): 2440-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21949244

RESUMO

The quantification of P-glycoprotein [P-gp, ABCB1, multidrug resistance 1 (MDR1)] protein in biological matrices is considered a key factor missing for useful translation of in vitro functional data to the in vivo situation and for comparison of transporter data among different in vitro models. In the present study a liquid chromatography (LC)-mass spectrometry method was developed to quantify P-gp membrane protein levels in different biological matrices. The amount of P-gp transporter protein was measured in Caco-2 cell monolayers and in inside-out human embryonic kidney (HEK)-MDR1 vesicles. From both in vitro systems, two preparations with different functionality were used. Transporter function was determined as digoxin efflux in Caco-2 cell monolayers and N-methylquinidine (NMQ) uptake in membrane vesicles, and, in addition, mRNA expression in the Caco-2 monolayers was measured. The results showed an excellent relationship between NMQ uptake functionality in inside-out HEK-MDR1 vesicles and protein contents. Similar concordance between the digoxin efflux and P-gp content in different Caco-2 cell cultures was observed, whereas mRNA levels are indicative of increased P-gp content and activity in older Caco-2 cultures, however, not yielding the same quantitative relationship. The results from both Caco-2 and HEK-MDR1 membrane vesicles confirm that the protein content is directly related to the level of activity in the respective system. The method presented here to quantify P-gp protein by LC-multiple reaction monitoring will facilitate the development of future methodologies to bridge between expression systems and cell/tissue models and to scale from in vitro models to whole organs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Células CACO-2 , Eletroforese em Gel de Poliacrilamida , Humanos , Transporte Proteico , RNA Mensageiro/metabolismo , Espectrometria de Massas por Ionização por Electrospray
14.
J Pharm Sci ; 110(1): 422-431, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122050

RESUMO

3D cultures of primary human hepatocytes (PHH) are emerging as a more in vivo-like culture system than previously available hepatic models. This work describes the characterisation of drug metabolism in 3D PHH spheroids. Spheroids were formed from three different donors of PHH and the expression and activities of important cytochrome P450 enzymes (CYP1A2, 2B6, 2C9, 2D6, and 3A4) were maintained for up to 21 days after seeding. The activity of CYP2B6 and 3A4 decreased, while the activity of CYP2C9 and 2D6 increased over time (P < 0.05). For six test compounds, that are metabolised by multiple enzymes, intrinsic clearance (CLint) values were comparable to standard in vitro hepatic models and successfully predicted in vivo CLint within 3-fold from observed values for low clearance compounds. Remarkably, the metabolic turnover of these low clearance compounds was reproducibly measured using only 1-3 spheroids, each composed of 2000 cells. Importantly, metabolites identified in the spheroid cultures reproduced the major metabolites observed in vivo, both primary and secondary metabolites were captured. In summary, the 3D PHH spheroid model shows promise to be used in drug discovery projects to study drug metabolism, including unknown mechanisms, over an extended period of time.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hepatócitos , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação de Medicamentos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Taxa de Depuração Metabólica
15.
Drug Metab Dispos ; 38(4): 705-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20071452

RESUMO

Membrane-bound transporter proteins play an important role in the efflux of drugs from cells and can significantly influence the pharmacokinetics of drug molecules. This study describes the production of large amounts of high-activity transporter membrane vesicles from human embryonic kidney 293-Epstein-Barr virus nuclear antigen cells transiently transfected using a Gateway-adapted pCEP4 plasmid. Transfections were scaled up to 10-liter cell cultures, and vesicle preparations were optimized using ultracentrifugation with a sucrose cushion, which enabled us to produce hundreds of milligrams of membrane vesicles expressing human efflux transporter proteins P-glycoprotein (P-gp)/multidrug resistance 1 (ABCB1), multidrug resistance protein 2 (MRP2) (ABCC2), and breast cancer resistance protein (BCRP) (ABCG2). Assays were developed and optimized for analyzing the ATP-dependent functionality of the transporters using probe substrates and specific inhibitors. Excellent signal/noise ratios of ATP-stimulated uptake for P-gp, MRP2, and BCRP vesicles were obtained, indicating high expression of functioning transporters. The uptake kinetics of the transporters was investigated by determining K(m) and V(max) using the model substrates N-methylquinidine (P-gp), estradiol-17beta-glucuronide (MRP2), and estrone-3-sulfate (BCRP). The ATP-dependent transport was inhibited by the model inhibitors verapamil (P-gp), benzbromarone (MRP2), and sulfasalazine (BCRP). The vesicles are thus well suited to screen for possible substrates and inhibitors in high throughput systems or are used for detailed mechanistic investigations of transporter kinetics of specific substances.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Herpesvirus Humano 4/genética , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Benzobromarona/farmacologia , Reatores Biológicos , Adesão Celular , Linhagem Celular , Proliferação de Células , DNA/biossíntese , DNA/genética , Imunofluorescência , Humanos , Cinética , Microscopia de Fluorescência , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas de Neoplasias/antagonistas & inibidores , Polietilenoimina/metabolismo , Proteínas Recombinantes/metabolismo , Sulfassalazina/farmacologia , Transfecção , Verapamil/farmacologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
16.
J Pharm Sci ; 109(7): 2309-2320, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32294459

RESUMO

The pharma industry designs increasingly less cytochrome P450 dependent and more metabolically stable drugs, and consequently UGT-metabolism becomes more frequently involved. This study compares 2 glucuronidation RAF-scaling approaches, product formation and substrate depletion, regarding their potential for prediction of in vivo DDI and the relative contribution of UGT-mediated phase II reactions in an industrial setting. RAFs were developed for UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15 recombinant UGT isoforms and a large 150-donor pooled human liver microsome batch. The RAF-values ranged from small values of 0.06 (UGT1A3), over 0.24 and 0.48 (UGT1A9 and UGT1A4), to values around 1 (1.11 for UGT2B7, 1.14 for UGT1A1), and high RAFs of 4.8 (UGT1A6) and 6.57 (UGT2B15). Both approaches identified the same primarily involved isoforms (≥75% relative contribution) of 5 clinical reference compounds (raloxifene, haloperidol, laropiprant, telmisartan and naloxone), in concordance with reported in vitro (R2 = 0.65) and clinical results for UGT1A1, 1A3, 1A4, 1A9, 2B7 and 2B15. This study is distinctive in that it is reporting the glucuronide formation in addition to substrate depletion. The product formation approach proved more sensitive and enables UGT phenotyping of slowly metabolized drugs, additionally it allows identification of structurally different glucuronides.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Sistema Enzimático do Citocromo P-450 , Glucuronosiltransferase/metabolismo , Humanos , Cinética , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas
17.
Drug Metab Dispos ; 37(12): 2275-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19741037

RESUMO

The aim of this study was to investigate the gene and protein expression profiles of important drug-transporting proteins in human cell lines commonly used for studies of drug transport mechanisms. Human cell lines used to transiently or stably express single transporters [HeLa, human embryonic kidney (HEK) 293] and leukemia cell lines used to study drug resistance by ATP-binding cassette transporters (HL-60, K562) were investigated and compared with organotypic cell lines (HepG2, Saos-2, Caco-2, and Caco-2 TC7). For gene expression studies, real-time polymerase chain reaction was used, whereas monospecific polyclonal antibodies were generated and used to investigate protein expression by immunohistochemistry. Thirty-six transporters were studied for gene expression, and nine were studied for protein expression. The antibodies were validated using expression patterns in human tissues. Finally, the function of one ubiquitously expressed transporter, MCT1/SLC16A1, was investigated using [(14)C]lactic acid as a substrate. In general, the adherent cell lines (HeLa, HEK293) displayed low transporter expression, and the expression patterns were barely affected by transfection. The leukemia cell lines (K562, HL-60) and Saos-2 also had low endogenous transporter expression, whereas the organotypic cell lines (HepG2 and Caco-2) showed higher expression of some transporters. Comparison of gene and protein expression profiles gave poor correlations, but better agreement was obtained for antibodies with a good validation score, indicating that antibody quality was a significant variable. It is noteworthy that the monocarboxylic acid-transporting protein MCT1 was significantly expressed in all and was functional in most of the cell lines, indicating that MCT1 may be a confounding factor when the transport of small anionic drugs is investigated.


Assuntos
Descoberta de Drogas/métodos , Perfilação da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Proteômica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Células CACO-2 , Adesão Celular , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Imuno-Histoquímica , Células K562 , Proteínas de Membrana Transportadoras/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/metabolismo , Transfecção
18.
Curr Opin Drug Discov Devel ; 11(1): 95-103, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18175272

RESUMO

Drug-transporter interactions have recently been demonstrated to play an important part in multidrug resistance, drug-drug interactions and drug disposition. Such interactions can occur as inhibition of transport, efflux out of cellular systems or enhanced transport into cellular systems. Modeling efforts are currently being undertaken using both ligand- and transporter-based methods, such as (3D) quantitative structure-activity relationship studies, pharmacophore modeling, homology modeling and molecular dynamics studies. The aim of these efforts is to explain how differences in chemical structures either enhance or weaken interactions with the transporter, or to elucidate how the transporter functions in general. This review summarizes recent modeling efforts in the light of difficulties such as the lack of X-ray crystal structures and the complexity and inconsistency of available experimental data on drug-transporter interactions.


Assuntos
Proteínas de Transporte/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Humanos , Ligantes , Modelos Moleculares , Relação Estrutura-Atividade
19.
Eur J Pharm Sci ; 35(5): 383-96, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18782614

RESUMO

Caco-2 cells, widely used to study carrier mediated uptake and efflux mechanisms, are known to have different properties when cultured under different conditions. In this study, Caco-2 cells from 10 different laboratories were compared in terms of mRNA expression levels of 72 drug and nutrient transporters, and 17 other target genes, including drug metabolising enzymes, using real-time PCR. The rank order of the top five expressed genes was: HPT1>GLUT3>GLUT5>GST1A>OATP-B. Rank correlation showed that for most of the samples, the gene ranking was not significantly different. Functionality of transporters and the permeability of passive transport markers metoprolol (transcellular) and atenolol (paracellular) were also compared. MDR1 and PepT1 function was investigated using talinolol and Gly-Sar transport, respectively. Sulfobromophthalein (BSP) was used as a marker for MRP2 and OATP-B functionality. Atenolol permeability was more variable across laboratories than metoprolol permeability. Talinolol efflux was observed by all the laboratories, whereas only five laboratories observed significant apical uptake of Gly-Sar. Three laboratories observed significant efflux of BSP. MDR1 expression significantly correlated to the efflux ratio and net active efflux of talinolol. PepT1 mRNA levels showed significant correlation to the uptake ratio and net active uptake of Gly-Sar. MRP2 and OATP-B showed no correlation to BSP transport parameters. Heterogeneity in transporter activity may thus be due to differences in transporter expression as shown for PepT1 and MDR1 which in turn is determined by the culture conditions. Absolute expression of genes was variable indicating that small differences in culture conditions have a significant impact on gene expression, although the overall expression patterns were similar.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Preparações Farmacêuticas/metabolismo , Células CACO-2 , DNA Complementar/biossíntese , DNA Complementar/genética , Interpretação Estatística de Dados , Expressão Gênica , Marcadores Genéticos , Humanos , Laboratórios , Permeabilidade , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Sci Rep ; 7(1): 6352, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743866

RESUMO

Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.


Assuntos
Anti-Hipertensivos/farmacocinética , Intestinos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Administração Oral , Animais , Anti-Hipertensivos/administração & dosagem , Atenolol/administração & dosagem , Atenolol/farmacocinética , Absorção Intestinal , Masculino , Metoprolol/administração & dosagem , Metoprolol/farmacocinética , Propranolol/administração & dosagem , Propranolol/farmacocinética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA