Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomacromolecules ; 20(9): 3340-3351, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356057

RESUMO

Thermoresponsive hydrogels are used for an array of biomedical applications. Lower critical solution temperature-type hydrogels have been observed in nature and extensively studied in comparison to upper critical solution temperature (UCST)-type hydrogels. Of the limited protein-based UCST-type hydrogels reported, none have been composed of a single coiled-coil domain. Here, we describe a biosynthesized homopentameric coiled-coil protein capable of demonstrating a UCST. Microscopy and structural analysis reveal that the hydrogel is stabilized by molecular entanglement of protein nanofibers, creating a porous matrix capable of binding the small hydrophobic molecule, curcumin. Curcumin binding increases the α-helical structure, fiber entanglement, mechanical integrity, and thermostability, resulting in sustained drug release at physiological temperature. This work provides the first example of a thermoresponsive hydrogel comprised of a single coiled-coil protein domain that can be used as a vehicle for sustained release and, by demonstrating UCST-type behavior, shows promise in forging a relationship between coiled-coil protein-phase behavior and that of synthetic polymer systems.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Polímeros/química , Proteínas/química , Preparações de Ação Retardada/química , Portadores de Fármacos/síntese química , Hidrogéis/síntese química , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos/genética , Engenharia de Proteínas , Temperatura
2.
Biomacromolecules ; 18(9): 2688-2698, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28686014

RESUMO

An engineered supercharged coiled-coil protein (CSP) and the cationic transfection reagent Lipofectamine 2000 are combined to form a lipoproteoplex for the purpose of dual delivery of siRNA and doxorubicin. CSP, bearing an external positive charge and axial hydrophobic pore, demonstrates the ability to condense siRNA and encapsulate the small-molecule chemotherapeutic, doxorubicin. The lipoproteoplex demonstrates improved doxorubicin loading relative to Lipofectamine 2000. Furthermore, it induces effective transfection of GAPDH (60% knockdown) in MCF-7 breast cancer cells with efficiencies comparing favorably to Lipofectamine 2000. When the lipoproteoplex is loaded with doxorubicin, the improved doxorubicin loading (∼40 µg Dox/mg CSP) results in a substantial decrease in MCF-7 cell viability.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , RNA Interferente Pequeno/química , Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos , Lipídeos/química , Células MCF-7
3.
AIDS ; 38(8): 1172-1180, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564482

RESUMO

OBJECTIVE: Kaposi sarcoma is a vascular tumor that affects the pulmonary system. However, the diagnosis of airway lesions suggestive of pulmonary Kaposi sarcoma (pKS) is reliant on bronchoscopic visualization. We evaluated the role of Kaposi sarcoma herpesvirus (KSHV) viral load in bronchoalveolar lavage (BAL) as a diagnostic biomarker in patients with bronchoscopic evidence of pKS and evaluated inflammatory cytokine profiles in BAL and blood samples. DESIGN: In this retrospective study, we evaluated KSHV viral load and cytokine profiles within BAL and blood samples in patients who underwent bronchoscopy for suspected pKS between 2016 and 2021. METHODS: KSHV viral load and cytokine profiles were obtained from both the circulation and BAL samples collected at the time of bronchoscopy to evaluate compartment-specific characteristics. BAL was centrifuged and stored as cell pellets and KSHV viral load was measured using primers for the KSHV K6 gene regions. RESULTS: We evaluated 38 BAL samples from 32 patients (30 with HIV co-infection) of whom 23 had pKS. In patients with airway lesions suggestive of pKS, there was higher KSHV viral load (median 3188 vs. 0 copies/10 6 cell equivalent; P  = 0.0047). A BAL KSHV viral load cutoff of 526 copies/10 6 cells had a sensitivity of 72% and specificity of 89% in determining lesions consistent with pKS. Those with pKS also had higher IL-1ß and IL-8 levels in BAL. The 3-year survival rate for pKS patients was 55%. CONCLUSION: KSHV viral load in BAL shows potential for aiding in pKS diagnosis. Patients with pKS also have evidence of cytokine dysregulation in BAL.


Assuntos
Líquido da Lavagem Broncoalveolar , Citocinas , Herpesvirus Humano 8 , Sarcoma de Kaposi , Carga Viral , Humanos , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/diagnóstico , Herpesvirus Humano 8/isolamento & purificação , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Líquido da Lavagem Broncoalveolar/virologia , Líquido da Lavagem Broncoalveolar/citologia , Adulto , Citocinas/análise , Broncoscopia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/virologia , Neoplasias Pulmonares/patologia , Biomarcadores/análise , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Idoso , Lavagem Broncoalveolar
4.
Mol Syst Des Eng ; 7(8): 915-932, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37274761

RESUMO

Labeled protein-based biomaterials have become a popular for various biomedical applications such as tissue-engineered, therapeutic, or diagnostic scaffolds. Labeling of protein biomaterials, including with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging techniques. These USPIO-based biomaterials are widely studied in magnetic resonance imaging (MRI), thermotherapy, and magnetically-driven drug delivery which provide a method for direct and non-invasive monitoring of implants or drug delivery agents. Where most developments have been made using polymers or collagen hydrogels, shown here is the use of a rationally designed protein as the building block for a meso-scale fiber. While USPIOs have been chemically conjugated to antibodies, glycoproteins, and tissue-engineered scaffolds for targeting or improved biocompatibility and stability, these constructs have predominantly served as diagnostic agents and often involve harsh conditions for USPIO synthesis. Here, we present an engineered protein-iron oxide hybrid material comprised of an azide-functionalized coiled-coil protein with small molecule binding capacity conjugated via bioorthogonal azide-alkyne cycloaddition to an alkyne-bearing iron oxide templating peptide, CMms6, for USPIO biomineralization under mild conditions. The coiled-coil protein, dubbed Q, has been previously shown to form nanofibers and, upon small molecule binding, further assembles into mesofibers via encapsulation and aggregation. The resulting hybrid material is capable of doxorubicin encapsulation as well as sensitive T2*-weighted MRI darkening for strong imaging capability that is uniquely derived from a coiled-coil protein.

5.
Front Aging Neurosci ; 12: 585218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192479

RESUMO

Microvascular rarefaction, or the decrease in vascular density, has been described in the cerebrovasculature of aging humans, rats, and, more recently, mice in the presence and absence of age-dependent diseases. Given the wide use of mice in modeling age-dependent human diseases of the cerebrovasculature, visualization, and quantification of the global murine cerebrovasculature is necessary for establishing the baseline changes that occur with aging. To provide in vivo whole-brain imaging of the cerebrovasculature in aging C57BL/6 mice longitudinally, contrast-enhanced magnetic resonance angiography (CE-MRA) was employed using a house-made gadolinium-bearing micellar blood pool agent. Enhancement in the vascular space permitted quantification of the detectable, or apparent, cerebral blood volume (aCBV), which was analyzed over 2 years of aging and compared to histological analysis of the cerebrovascular density. A significant loss in the aCBV was detected by CE-MRA over the aging period. Histological analysis via vessel-probing immunohistochemistry confirmed a significant loss in the cerebrovascular density over the same 2-year aging period, validating the CE-MRA findings. While these techniques use widely different methods of assessment and spatial resolutions, their comparable findings in detected vascular loss corroborate the growing body of literature describing vascular rarefaction aging. These findings suggest that such age-dependent changes can contribute to cerebrovascular and neurodegenerative diseases, which are modeled using wild-type and transgenic laboratory rodents.

6.
ACS Nano ; 13(3): 2969-2985, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30758189

RESUMO

Engineered proteins provide an interesting template for designing fluorine-19 (19F) magnetic resonance imaging (MRI) contrast agents, yet progress has been hindered by the unpredictable relaxation properties of fluorine. Herein, we present the biosynthesis of a protein block copolymer, termed "fluorinated thermoresponsive assembled protein" (F-TRAP), which assembles into a monodisperse nanoscale micelle with interesting 19F NMR properties and the ability to encapsulate and release small therapeutic molecules, imparting potential as a diagnostic and therapeutic (theranostic) agent. The assembly of the F-TRAP micelle, composed of a coiled-coil pentamer corona and a hydrophobic, thermoresponsive elastin-like polypeptide core, results in a drastic depression in spin-spin relaxation ( T2) times and unaffected spin-lattice relaxation ( T1) times. The nearly unchanging T1 relaxation rates and linearly dependent T2 relaxation rates have allowed for detection via zero echo time 19F MRI, and the in vivo MR potential has been preliminarily explored using 19F magnetic resonance spectroscopy (MRS). This fluorinated micelle has also demonstrated the ability to encapsulate the small-molecule chemotherapeutic doxorubicin and release its cargo in a thermoresponsive manner owing to its inherent stimuli-responsive properties, presenting an interesting avenue for the development of thermoresponsive 19F MRI/MRS-traceable theranostic agents.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Engenharia de Proteínas , Proteínas/química , Nanomedicina Teranóstica , Animais , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Feminino , Flúor/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Imageamento por Ressonância Magnética , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Camundongos Nus , Micelas , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Temperatura
7.
Methods Mol Biol ; 1779: 527-541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886555

RESUMO

Manganese-enhanced MRI (MRI) is a technique that allows for a noninvasive in vivo estimation of neuronal transport. It relies on the physicochemical properties of manganese, which is both a calcium analogue being transported along neurons by active transport, and a paramagnetic compound that can be detected on conventional T1-weighted images. Here, we report a multi-session MEMRI protocol that helps establish time-dependent curves relating to neuronal transport along the olfactory tract over several days. The characterization of these curves via unbiased fitting enables us to infer objectively a set of three parameters (the rate of manganese transport from the maximum slope, the peak intensity, and the time to peak intensity). These parameters, measured previously in wild type mice during normal aging, have served as a baseline to demonstrate their significant sensitivity to pathogenic processes associated with Tau pathology. Importantly, the evaluation of these three parameters and their use as indicators can be extended to monitor any normal and pathogenic processes where neuronal transport is altered. This approach can be applied to characterize and quantify the effect of any neurological disease conditions on neuronal transport in animal models, together with the efficacy of potential therapies.


Assuntos
Imageamento por Ressonância Magnética/métodos , Manganês/administração & dosagem , Bulbo Olfatório/diagnóstico por imagem , Animais , Transporte Biológico Ativo , Modelos Animais de Doenças , Humanos , Manganês/farmacocinética , Bulbo Olfatório/química , Tauopatias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA